Light-powered Escherichia coli cell division for chemical production

Qiang Ding, Danlei Ma, Gao-Qiang Liu, Yang Li, Liang Guo, Cong Gao, Guipeng Hu, Chao Ye, Jia Liu, Liming Liu, Xiulai Chen
2020 Nature Communications  
Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 μm-1
more » ... d acetoin titer to 67.2 g·L-1. Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 μm3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L-1. Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories.
doi:10.1038/s41467-020-16154-3 pmid:32385264 fatcat:qb5zd6eokzhszddol2oh3rmxri