Corrosion Behavior and Biological Activity of Micro Arc Oxidation Coatings with Berberine on a Pure Magnesium Surface

Liting Mu, Zhen Ma, Jingyan Wang, Shidan Yuan, Muqin Li
2020 Coatings  
Bone tissue repair materials can cause problems such as inflammation around the implant, slow bone regeneration, and poor repair quality. In order to solve these problems, a coating was prepared by ultrasonic micro-arc oxidation and self-assembly technology on a pure magnesium substrate. We studied the effect of berberine on the performance of the ultrasonic micro-arc oxidation/polylactic acid and glycolic acid copolymer/berberine (UMAO/PLGA/BR) coating. The chemical and morphological character
more » ... of the coating was analyzed using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The corrosion properties were studied by potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated body fluid. The cumulative release of drugs was tested by high-performance liquid chromatography. The results indicate that different amounts of BR can seal the corrosion channel to different extents. These coatings have a self-corrosion current density (Icorr) at least one order of magnitude lower than the UMAO coatings. When the BR content is 3.0 g/L, the self-corrosion current density of the UMAO/PLGA/BR coatings is the lowest (3.14 × 10−8 A/cm2) and the corrosion resistance is improved. UMAO/PLGA/BR coatings have excellent biological activity, which can effectively solve the clinical problem of rapid degradation of pure magnesium and easy infection.
doi:10.3390/coatings10090837 fatcat:4gkgn5kf3nhanmc3433kumy7kq