Dexamethasone-induced impairment of post-injury skeletal muscle regeneration

Iwona Otrocka-Domagała, Katarzyna Paździor-Czapula, Michał Gesek
2019 BMC Veterinary Research  
Due to the routine use of dexamethasone (DEX) in veterinary and human medicine and its negative impact on the rate of wound healing and skeletal muscle condition, we decided to investigate the effect of DEX on the inflammatory and repair phases of skeletal muscle regeneration. In this study, a porcine skeletal muscle injury model was used. The animals were divided into non-treated and DEX-treated (0.2 mg/kg/day) groups. On the 15th day of DEX administration, bupivacaine hydrochloride-induced
more » ... chloride-induced muscle injury was performed, and the animals were sacrificed in subsequent days. Regeneration was assessed by histopathology and immunohistochemistry. In the inflammatory phase, the presence and degree of extravasation, necrosis and inflammation were evaluated, while in the repair phase, the numbers of muscle precursor cells (MPCs), myotubes and young myofibres were estimated. Results: In the inflammatory phase, DEX increased the severity and prolonged extravasation, prolonged necrosis and inflammation at the site of the muscle injury. In the repair phase, DEX delayed and prolonged MPC presence, impaired and prolonged myotube formation, and delayed young myofibre formation. Furthermore, DEX markedly affected the kinetics of the parameters of the inflammatory phase of the skeletal muscle regeneration more than that of the repair phase. Conclusions: DEX impairment of the inflammatory and repair phases of the skeletal muscle regeneration was proven for the first time. The drug appears to affect the inflammatory phase more than the repair phase of regeneration. In light of our results, the possibility of reduction of the regenerative capacity of skeletal muscles should be considered during DEX therapy, and its use should be based on risk-benefit assessment.
doi:10.1186/s12917-019-1804-1 fatcat:oefvbp22pvf3pierw2jj2lynsi