NUVA: A Naming Utterance Verifier for Aphasia Treatment

David S. Barbera, Mark Huckvale, Victoria Fleming, Emily Upton, Henry Coley-Fisher, Catherine Doogan, Ian Shaw, William Latham, Alexander P. Leff, Jenny Crinion
2021 Computer Speech and Language  
Anomia (word-finding difficulties) is the hallmark of aphasia, an acquired language disorder most commonly caused by stroke. Assessment of speech performance using picture naming tasks is a key method for both diagnosis and monitoring of responses to treatment interventions by people with aphasia (PWA). Currently, this assessment is conducted manually by speech and language therapists (SLT). Surprisingly, despite advancements in automatic speech recognition (ASR) and artificial intelligence
more » ... technologies like deep learning, research on developing automated systems for this task has been scarce. Here we present NUVA, an utterance verification system incorporating a deep learning element that classifies 'correct' versus' incorrect' naming attempts from aphasic stroke patients. When tested on eight native British-English speaking PWA the system's performance accuracy ranged between 83.6% to 93.6%, with a 10-fold cross-validation mean of 89.5%. This performance was not only significantly better than a baseline created for this study using one of the leading commercially available ASRs (Google speech-to-text service) but also comparable in some instances with two independent SLT ratings for the same dataset.
doi:10.1016/j.csl.2021.101221 pmid:34483474 pmcid:PMC8117974 fatcat:thrahglhb5dczojt4vprpnucwu