Eigenvalues of graph Laplacians via rank-one perturbations [article]

Steven Klee, Matthew T. Stamps
<span title="2020-08-04">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We show how the spectrum of a graph Laplacian changes with respect to a certain type of rank-one perturbation. We apply our finding to give new short proofs of the spectral version of Kirchhoff's Matrix Tree Theorem and known derivations for the characteristic polynomials of the Laplacians for several well known families of graphs, including complete, complete multipartite, and threshold graphs.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2008.01669v1">arXiv:2008.01669v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zfjgfjfhprd7basiwznc6jgmka">fatcat:zfjgfjfhprd7basiwznc6jgmka</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200812152133/https://arxiv.org/pdf/2008.01669v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2008.01669v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>