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Abstract—Trustworthy operation of safety-critical infrastruc-
tures necessitates efficient solutions that satisfy both realtimeness
and security requirements simultaneously. In this paper, we
present Sechduler, a formally verifiable security-aware operating
system scheduler that dynamically makes sure that system
computational resources are allocated to individual waiting tasks
in an optimal order such that, if feasible, neither realtime nor
security requirements of the system are violated. Additionally,
if not both of the requirements can be satisfied simultaneously,
Sechduler makes use of easy-to-define linear temporal logic-based
policies as well as automatically generated Büchi automaton-
based monitors, compiled as loadable kernel modules, to enforce
which requirements should get the priority. Our experimental
results show that Sechduler can adaptively enforce the system-
wide logic-based temporal policies within the kernel and with
minimal performance overhead of 3% on average to guarantee
high level of combined security and realtimeness simultaneously1.

I. INTRODUCTION

Maintenance of the safety-critical infrastructures, e.g., nu-
clear power plants and avionics systems, is extremely crucial
because a failure to meet a single requirement may lead to a
catastrophic consequence such as an explosion or an accident
leading to loss of life. In particular, the realtime scheduling
of tasks in those infrastructures such that individual timing
requirements are met reliably is often a challenging endeavor.
Furthermore, to guarantee core functionalities, those systems
need to be secure and intrusion resilient as they operate in
possibly adversarial environments. Currently many commer-
cial and open-source security solutions are available that can
monitor different security aspects of the systems. Clearly, the
most comprehensive security level will be achieved by running
a set of those security sensors in parallel; however, this would
result in computationally intensive security analyses and hence
over-consumption of the system’s limited resources. Therefore,
the system’s core realtime functionality requirements could
be violated as the system’s critical tasks are deprived of
the resources. This signifies the fact that to ensure timely
accomplishment of the core system functionalities, the de-
ployed security solutions need to be resource aware and satisfy
the system-wide realtime requirements, i.e., realtime security.
The same rationale justifies an urgent need for solutions
to guarantee the secure realtimeness property provided by
realtime solutions, e.g., realtime schedulers, that are aware of
the system security requirements according to the high-level
organizational objectives.

Previous efforts in designing realtime and security solutions
have fallen short in several major aspects. There have been
many theoretical as well as heuristic scheduling algorithms
such as the Linux kernel 3.X Completely-Fair Scheduler
[19], RTLinux [24] attempt to allocate the system CPU(s)
to individual waiting tasks such that the likelihood of task

1This material is based upon work supported by the Office of Naval
Research under Award Number N00014-12-1-0462.

starvations and deadline misses are minimized. Although the
abovementioned solutions can be employed to ensure timely
accomplishments of safety-critical and realtime applications,
none of them take into account the existence possibility of
malicious activities, e.g., an adversarial unfinished task waiting
for execution. Security and privacy researchers have proposed
numerous host-based intrusion prevention and detection so-
lutions, e.g., Samhain [29], as well as forensics and root-
cause analysis algorithms and tools, such as Backtracker [13],
and FloGuard [37], in order to detect and terminate ongoing
malicious misbehaviors with minimum amount of performance
overhead on the target system. Even though the abovemen-
tioned security solutions attempt to minimize the overhead
as a best effort to terminate attacks before it gets too late,
e.g., confidential data is sent out to network, there is currently
no generic and theoretically sound solution that considers the
system’s overall realtime requirements and guarantees timely
reaction against the ongoing intrusions.

In this paper, we present Sechduler, a formally verifiable
security-aware operating system scheduler that guarantees
simultaneous satisfaction of the system-wide realtimeness as
well as security requirements. In particular, Sechduler ac-
complishes its objectives through three major steps. First,
during a one-time offline phase, system security policies
are defined that determine how the security vs. realtimeness
tradeoffs should be resolved. These policies can be designed
following whitelisting (deny by default), blacklisting (allow by
default) or other more generalized paradigms. Second, during
an online phase while the system is operating, Sechduler
selects the appropriate subset of policies, given the current
security state of the system, and generates the corresponding
single logic-based conjunctive policy predicate. Sechduler then
converts the policy to an extended finite state machine-based
monitor automatically. Finally, Sechduler enhances the kernel
scheduler with the generated monitor dynamically for run-
time monitoring and verification of the system computational
resource allocations. Consequently, Sechduler modifies the
kernel’s resource allocation schedule actively if it is about to
violate any of the predefined system-wide security policies.

More specifically, Sechduler makes use of an easy to under-
stand formal language, namely three-valued linear temporal
logic that facilitates formulation of comprehensive temporal
system-wide security policies for the system administrators.
Needless to mention, the designed policies can be reused
across systems (analogous to the SE-Linux access control
policies). The employed three-value logic, i.e., true: policy-
compliant, false: policy violation, and inconclusive: insuf-
ficient information, enables Sechduler to use the designed
policies for accurate verification and reconfiguration of the
kernel task scheduling dynamically based on the observed
scheduling trace. , i.e., the past and current (to be) scheduled
tasks. Sechduler considers the trace formally as a finite prefix
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of the (potentially) infinite task scheduling sequence in the
future. For the kernel to understand and enforce the policies,
Sechduler converts the logic-based policies automatically to
an extended finite state machine, so-called Büchi automaton,
working with the three-value logic. The Büchi automaton
monitors the kernel scheduling trace and determines whether
the policy is about to be violated. If so, the scheduler is
reconfigured and the system CPU is allocated to the next
non-policy-violating waiting task with an urgent need for
execution. It is noteworthy that the automated conversion
algorithm in Sechduler results in an automaton with provably
minimum number of states ensuring that the performance over-
head of the runtime monitoring and verification is minimized.
Consequently, using a realtime and security-aware schedul-
ing algorithm through continuous optimization for timely
resource allocations and discrete logic-based monitoring for
security verifications, Sechduler makes sure to provide both
realtimeness and security guarantees simultaneously if feasible
depending on the available time and resources.

In summary, the contributions of this paper are as follows:
1) We propose an easy-to-understand logical formulation
formalism to declare the system security requirements for
different system security states; 2) We introduce a three-value
logic-based automated algorithm to construct security formal
monitors dynamically for runtime verification and temporal
policy enforcement; 3) We propose a hybrid operating sys-
tem task scheduling algorithm using continuous task ranking
optimization and discrete logic-based formal verification tech-
niques; and 4) We validate the Sechduler framework on a real-
world host system through implementation and deployment
of a working prototype of the proposed algorithms. It is also
important to mention what Sechduler does not contribute to. In
particular, Sechduler does not present a new intrusion detection
sensor and automatic logic-based policy generation algorithm.
Instead, Sechduler makes use of those solutions to provide the
runtime verification capability to maintain the system security
and realtime requirements and avoid potential violations of the
previously defined temporal policies.

We implemented a working prototype of the Sechduler
framework for the Linux kernel 3.4.4. In particular, once a
host-based intrusion detection system, e.g., the Samhain file
integrity checker, identifies a malicious behavior while the
system is operating, Sechduler selects the relevant subset of
the security policies based on the current security state of
the system, determined by the triggered intrusion detection
system alerts, and creates a conjunctive logical predicate. We
modified the kernel scheduler such that, after the automated
predicate-to-automaton conversion, the generated automaton
can be compiled dynamically and inserted as loadable kernel
module into the running kernel. The modified scheduler and
the loaded module makes sure that the individual tasks are
completed in a timely manner as long as the temporal security
policies are not violated.

II. MOTIVATION AND SOLUTION OVERVIEW

In this section, we first explain several major practical
scenarios where Sechduler can help to resolve the involved
challenging issues effectively. Then, we present an overview
of the Sechduler architecture and its individual components.

We are interested in the following challenging questions.
How can we make sure that the system satisfies its security and
realtimeness requirements simultaneously? If this is infeasible
due to the limited resources, which one should be sacrificed
for the other? The answer to the latter question is subjective,
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Fig. 1. CPU Overhead of Intrusion Detection Sensors

and hence cannot be automated completely. This is because
resolution of the realtimeness vs. security tradeoff depends
heavily on the overall mission objective that are not often
documented clearly. For instance, realtime requirements in
a nuclear power plant are often much more strict than the
requirements regarding its privacy concerns whereas in a
financial institute it is often the other way around. How
should this problem (resolution of the realtimeness vs. security
tradeoff) be formulated such that it is easy to define by the
security administrators for different mission objectives? How
can those human-readable policies be interpreted dynamically
and enforced system-wide while the system is in its operational
mode? and finally, how can all of these be accomplished with
minimum overhead so that the solution can be employed in
real-world large-scale infrastructures?

Motivating Scenarios. 1) Partial System Pause for Root-
Cause Analysis: Currently, there are many available security
solutions such as host-based intrusion detection systems that
can be deployed permanently to monitor almost every system
aspect to terminate potentially malicious activities. However,
only few sensors are often deployed in real-world systems
because of the sensors’ resource requirements and possibly
high performance overheads. For instance, based on our ex-
periments, the TEMU information flow tracking and root-
cause analysis engine [25] slows down the system’s overall
throughput 20X on average. Figure 1 shows the average CPU
overhead for some of the well-known intrusion detectors.
Therefore, several reactive root cause analysis and sensor
selection solutions such as BackTracker [14] and FloGuard
[35] have been proposed that deploy and turn on sensors
and analysis engines on demand as a reaction to a detected
malicious activity. As a case in point, BackTracker starts
the analysis of the system’s syslog file once a lightweight
file integrity checker, e.g., Samhain [29], reports a suspi-
cious confidentiality-sensitive file read by a process Pi. The
BackTracker engine completes a computationally intensive
data flow-based backtracking analysis to determine the main
source of the detected anomalous sensitive file read, such
as a network socket, and whether the source was malicious,
e.g., a known malicious website. To prevent the possibility
of sensitive data disclosure, e.g., through a socket send out
command by the suspicious process which accessed the file,
BackTracker needs to pause the whole system until the end of
the tedious backtracking analysis with a proof that the source
is not malicious. Alternatively, Sechduler makes sure that the
system continues its normal operation completely except when
the following temporal security policy is about to be violated:

No [Process Pi execution] UNTIL [[BackTracker Completes]
AND [Source is legitimate]]

Fig. 3. A Sample Temporal Security Policy

In the case of policy violation, Sechduler will enforce the
policy actively by pausing the system partially, i.e. the process
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Fig. 2. Sechduler’s High-Level Architecture and Interconnected Components

Pi will not be given the CPU access for execution.
2) Security-Aware Task Scheduling: Generally, although

simultaneous consideration of realtime and security require-
ments occurs frequently in real-world settings, handling it effi-
ciently and accurately is a challenging endeavor. For instance,
let us consider an automatic generation control2 process Pj
with (urgent) realtime deadline constraints asks for the system
CPU while its security level is marked low due to a potentially
malicious buffer overflow detected by the Memcheck [17]
dynamic memory access monitoring suite. Whether it should
be given the CPU access must be determined after a security
risk analysis of the possible outcomes of either letting the
(malicious) task execute and send corrupted control commands
with potentially catastrophic consequences such as generator
explosions [18] or denying its CPU access request and hence
avoiding a possibly corrective power generation adjustment
when the load has increased significantly. Operating system
schedulers are one of the very few places in a system that
the security and realtimeness requirements meet and may
contradict each other, and hence the security vs. realtimeness
tradeoff can be resolved. Currently, no operating system sched-
uler handles both criteria simultaneously. Sechduler offers to
resolve such security-realtimeness dilemmas through enforce-
ment of predefined temporal logic-based policies dynamically.
For instance, in the abovementioned scenario, given the fol-
lowing policy rule, Sechduler would enforce the policy and

Globally [[Security(Pj) > Medium ] AND
[Realtimeness(Pj) > Unnecessary ]] → [Process Pj
execution]

Fig. 4. A Security-aware Scheduling Policy Rule
let the process Pj get access to the system CPU and continue
execution. It is noteworthy that the above rule somewhat
sacrifices the security for the system’s realtimeness in a power-
grid critical infrastructure. The same policy may be defined
completely differently in a financial enterprise environment,
where the monetary transaction security is more important
than their timely completion. The policy rule in Figure 4
has been defined specifically for the process Pj; however,
the policies in Sechduler are defined parametrically for the
system and application processes generically to minimize the
required amount of effort to complete the policy definition
phase. The parameters are later replaced with concrete process
IDs dynamically based on the triggered security sensor alerts.

Sechduler Overview. In this section, we present an
overview of how the proposed framework achieves the above-
mentioned objectives in systems with both realtimeness and
security requirements. Figure 2 illustrates Sechduler’s different
components and how individual components are intercon-
nected logically. Initially, the security administrators write

2In a power-grid critical infrastructure, automatic generation control is a
controller software for adjusting the power output of multiple generators at
different power plants, in response to changes in the load [4].

system security temporal policies using the easy-to-understand
formalism in Sechduler. This phase is very similar to writing
access control policies for firewalls or host-based SE-Linux
systems; however, in Sechduler, administrators concentrate
on timing- and scheduling-related security concerns instead.
Briefly, each policy determines the scheduling constraints that
need to be held at a system security state by the operating sys-
tem to guarantee that the system-wide security is maintained.
Although, in this paper, we assume that the policy writing is
completed as a one-time manual effort, Sechduler could be
extended and make use of the recent (semi-)automated policy
writing algorithms and tools [22]. We consider those directions
outside the scope of this paper and currently investigate them
as future work. Furthermore, like SE-Linux policy rulesets,
Sechduler’s temporal policies may also be reused across
different systems to reduce or completely eliminate the need
for the policy writing phase.

During the system’s operational mode, we assume that ap-
propriate host-based intrusion detection systems are deployed
and are monitoring important aspects of the target system,
such as the filesystem integrity using, for instance, periodic
hash function-based scans [29]. In case a malicious activity is
identified, Sechduler receives the triggered intrusion detection
system alerts that cooperatively report the system’s current
security state. Sechduler goes through its policy repository
dynamically and selects the relevant (possibly empty) subset
of policy rules that correspond to the system’s current state.
Sechduler then constructs a single system-wide temporal logic-
based predicate using the collected policy rules, and converts
the predicate into a Büchi automaton-based monitor automati-
cally. The automaton is compiled as a loadable kernel module
and inserted into the running operating system kernel. The
modified kernel scheduler notices the inserted module, and
from then on verifies its individual task scheduling decisions
using the loaded monitor. Additionally, if needed, it enforces
the policies by reconfiguring the system’s resource allocations,
i.e., scheduling decisions, adaptively.

III. SYSTEM-WIDE REQUIREMENT DESCRIPTION

To formulate the system scheduling security policies, Sech-
duler makes use of an extended three-valued linear temporal
logic formalism [2], [20]. Let us define A to be a finite set
of atomic logical propositions {b1,b2, · · · ,b|A|} and Σ = 2A a
finite alphabet composed of the abovementioned propositions.
Every element of the alphabet is a possibly empty set of
propositions from A, and is denoted by ai, e.g., ai = b1,b4,b9.
Additionally, as Sechduler deals with runtime verification of
the past and current system traces3 of the scheduled tasks,
we define Σ∗ to be all of the possible finite traces over Σ,
e.g., (a0a1a2), where two subsequent events ai and a j are

3We define trace as a sequence of scheduled tasks in the target system.
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represented by symbolic concatenation aia j. Similarly, Σω is
defined to be the set of infinite system traces.

The set of linear temporal logic-based security policies is
inductively defined by the grammar

ϕ ::= true | b | ¬ϕ | ϕ∨ϕ | ϕ U ϕ | X ϕ, (1)

where ϕ is a logical predicate; U and X represent the temporal
until and next operators, respectively. For policy description
simplicity, like in the related past literature, Sechduler also
makes use of the following three redundant notations: ϕ∧ψ
instead of ¬(¬ϕ ∨ ¬ψ), ϕ → ψ instead of ¬ϕ ∨ ψ, F ϕ
(eventually) instead of true U ϕ, and G ϕ (globally) instead
of ¬(true U ¬ϕ).

Furthermore, the semantics of the scheduling security policy
description formalism is defined inductively as follows

ω, i � true
ω, i � ¬ϕ iff ω, i � ϕ
ω, i � b iff b ∈ ai

ω, i � ϕ1 ∨ϕ2 iff ω, i � ϕ1 or ω, i � ϕ2

ω, i � ϕ1U ϕ2 iff ∃k ≥ i s.t. ω,k � ϕ2

and ∀i ≤ l < k s.t. ω,k � ϕ1

ω, i � X ϕ iff ω, i+1 � ϕ
ω, i � ϕ iff ω,0 � ϕ (2)

where ω= a0a1, · · ·ai, · · · ∈ Σω is an infinite system scheduling
trace (a sequence of scheduled system tasks by the kernel’s
scheduler), and i represents the index of a particular task in
the sequence. As discussed above, ai denotes an element of
the alphabet Σ and consists of a possibly empty set of atomic
propositions. For a given temporal security policy predicate ϕ,
we define the language L(ϕ) = {ω ∈ Σω|ω � ϕ} to be the set
of all infinite-length system scheduling traces that comply the
predicate ϕ.

Original temporal logic formulation [20] works with the
abovementioned Boolean semantics that determines whether
ω � ϕ for a particular predicate ϕ and an infinite word ω
holds or not, i.e., true or false. However, in practice, Sechduler
completes the runtime system scheduling security verification
dynamically given a finite prefix υ of ω. Such a finite prefix
of system scheduling activities may not include sufficient
information to determine whether or not the system-wide
security predicate holds, because two different infinite suffix
traces ω′

b b ∈ {0,1} of the prefix υ may occur in the future,
i.e., ω0 = υω′

0 or ω1 = υω′
1, that result in different Boolean

values, e.g., ω0 � ϕ and ω1 � ϕ. Therefore, Sechduler makes
use of an extended three-valued semantics [2] that assign each
finite prefix υ a value of true, false, or inconclusive depending
on the sufficiency of the information within υ. Sechduler
determines υ � ϕ (or υ � ϕ) if ωi � ϕ (or ωi � ϕ) holds
for any possible infinite suffix system scheduling trace ω′

i.
The assessment value for the remaining cases depends on the
suffix trace values, and hence Sechduler’s evaluation results
in inconclusive and Sechduler waits for the future system
scheduling events to make up its definite mind. In particular
the semantics is defined as follows:

[υ � ϕ] =

{
true if ∀ω′

i ∈ Σω : υω′
i � ϕ,

false if ∀ω′
i ∈ Σω : υω′

i � ϕ,
inconclusive otherwise.

(3)

It is noteworthy that because Sechduler’s objective is to
prevent a particular task execution if its access to CPU

violates a particular policy, during the system-wide scheduling
security verification with a single finite system scheduling
trace, Sechduler has to detect the policy violation as soon
as the finite prefix gives that sufficient information so that
Sechduler can deny the corresponding CPU access. Formally,
Sechduler needs to be able to recognize the minimum-length
informative prefixes.

IV. ONLINE SECURITY PREDICATE GENERATION

Detector-Capability Matrix. During its runtime opera-
tion, Sechduler makes use of a security knowledge-base, so-
called detector-capability matrix, that encodes all the domain
knowledge about the security incidents of interest as well
as the available detection mechanisms and their incident
detection capabilities. The matrix is designed once and can
be reused across different systems. The incidents in the
detector-capability matrix include all possible types of security
incidents (events) ei ∈ E of interest that could potentially
occur in the target system. To improve the scalability and
ease of design, each incident type in the database represents
a generic class, e.g. system memory over-usage by a process,
that encompasses all target systems, without mentioning the
specific context like in the following described event The
apache process reads the /etc/shadow file. Sechduler
also stores the set of available host-based intrusion detection
systems di ∈ D that may be deployed to detect particular
security incidents within the target system. For each detec-
tion mechanism, Sechduler requires relative accuracy measure
values associated with the detector. The accuracy values for
each detector di are its corresponding false positive Fp(di,e j)
and false negative Fn(di,e j) rates that encode its capability in
detecting a particular security incident e j.

Given the abovementioned information, Sechduler creates
the detector-capability matrix, which indicates the ability of
a given intrusion detection system to detect various incident
types. In particular, the matrix is defined over the Cartesian
product of the incident type set and the set of detectors,
and shows how likely it is that each detection system could
detect the occurrence of a specific incident type. In our
implementations, we have used relative qualitative measure
values. C (or N) means that the detection technique can
always (or never) detect the incident, while L/M/H means
that it can detect the instances of a incident occurrence with
low/medium/high probability. These values are later translated
to their corresponding numeric values by Sechduler as follows:
C(1), H(0.75), M(0.5), L(0.25), N(0).

Policy Selection. The temporal security policies pi ∈ P in
Sechduler are written in a specific format such that Sechduler
can parse and process the different segments properly, and are
stored in the policy repository. In particular, the i-th policy is
represented by an XML element with the following attributes:
1) Precondition: The precondition attribute encodes the trig-
gering security incident e(pi) that, if occurred, necessitates
the enforcement of this scheduler temporal security policy;
2) Enforcement threshold: To deal with the uncertainty of
the intrusion detection alerts, the enforcement threshold τ(pi)
stores the probability value that if the precondition’s likelihood
in the target system exceeds, Sechduler has to enforce the
policy; and 3) Predicate: The predicate attribute of the policy
stores the main linear temporal logic-based scheduler security
predicate ϕ(pi) that Sechduler needs to load and enforce if the
precondition incident occurs.

During the system’s operation, Sechduler starts the event-
driven policy selection procedure once any intrusion detection
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alert (observable) o
e j
di

∈ Odi , which reports occurrence of
the j-th incident by the i-th intrusion detection system, is
triggered. Sechduler looks up the probability that the alert’s
corresponding security incident has occurred Pr(e j) in the
detector-capability matrix by calculating

Pr(e j|oi) =
[(1−Fn(e j,oi)) ·Pr(e j)]

(1−Fn(e j,oi)) ·Pr(e j)+Fp(e j,oi) · (Pr(ē j))
,

(4)
where, for deployment simplicity, the alerts from different
intrusion detection systems regarding the same security in-
cident are assumed to be independent. However, Sechduler
can employ the corresponding cross-detector joint uncertainty
distribution if available.

Consequently, given the calculated incident probability
value Pr(e j|oi), Sechduler investigates each policy pi within
the system policy repository and selects the policy for en-
forcement if the precondition matches the incident e j, i.e.,
e j = e(pi) and Pr(e j|oi) is larger than the policy’s enforce-
ment threshold τ(pi) < Pr(e j|oi). Needless to mention that
Sechduler does not pick the policy if it is already selected
and is being enforced currently. Finally, Sechduler constructs
a conjunctive linear temporal logic-based predicate using the
selected subset of policies P: ϕ =∧pi∈Pϕ(pi). It is noteworthy
that Sechduler does not need to know about the set of running
processes in the system a priori. The processes’ names/IDs are
reported by IDSes and then used to update the corresponding
fields in the policies before the kernel modules are generat-
ed/compiled. Consequently, within the kernel, the modified
scheduler knows the exact target processes’ names/IDs. As
discussed in the next section, Sechduler dynamically enforces
the generated conjunctive predicate system-wide until it is
satisfied completely.

V. STATE-BASED SCHEDULER MONITOR

Kernel Scheduler Security Monitor. Given the selected
predicate, Sechduler converts it to a monitor that is later loaded
on the kernel to verify the system scheduling activities and
detect the scheduling decisions that violate the system-wide
temporal security policies. In particular, Sechduler makes use
of a state-based monitor using the Büchi automaton formalism,
such that the system is in a particular state at each time instant.
Every scheduling activity is modeled as an event and causes a
state transition on the model. Formally, a Büchi automaton is
defined as a tuple (Σ,Q,Q0,δ,F), where Σ is a finite alphabet;
Q is a finite non-empty set of system security states; Q0 ⊆ Q
is a set of initial security states of the system; δ : Q×Σ → 2Q

is the security state transition function4 that determines the
state updates according to the most recent system scheduling
events; and F ⊆ Q is a a set of accepting security states that
represent the situations that the predefined temporal system
security policies are completely satisfied.

An infinite series of operating system scheduling decisions,
formulated as a word ω = a0a1a2... ∈ Σω, is modeled as a
sequence of states qi and transitions ai in the Büchi automaton
η = q0a0q1a1q2... such that q0 ∈ Q0 and qi+1 ∈ δ(qi,ai). The
Büchi automaton accepts such an infinite run η iff intersection
of F and the set of states which are visited infinitely often
during η is not empty. As discussed, Büchi automata are
defined for infinite input traces; however, Sechduler takes, at
each time instant, a finite input trace of the system’s scheduling

4Similarly, δ′ is defined for Σ∗ by δ′(Q′,ε) = Q′ and δ′(Q′,ab) =⋃
q′∈δ′(Q′ ,a) δ(q′,b) Q′ ⊆ Q,a ∈ Σ∗.

activities related to the past and current incidents, i.e., the
future task scheduling are not predictable. Sechduler makes
use of a modified version of the Büchi [2] that can deal with
finite system traces such as ω = a0a1a2...ac ∈ Σ∗, where ac
represents the current scheduling incident. We call the cor-
responding state-transition sequence η = q0a0q1a1q2...acqc+1

accepting iff qc+1 ∈ F . Furthermore, to improve the runtime
system monitoring performance, Sechduler first converts the
abovementioned non-deterministic automaton to a determinis-
tic finite automaton (DFA) model with a single initial state
|Q0 = 1|, where the transition function results in a single
destination state given a source and action, i.e., |δ(q,a)|= 1.

Automated Security Predicate-to-Monitor Conversion.
As discussed above, Sechduler needs to translate the selected
temporal system-wide security policies ϕ into a finite state
machine monitor M(ϕ) that will be used later for dynamic
monitoring and verification of the system’s scheduler se-
curity υ � ϕ given a finite sequence of the past and cur-
rent scheduling decisions υ. Sechduler starts with converting
security requirement predicate to its corresponding Büchi
automaton automatically. In particular, like in [8], Sechd-
uler implements a recursive depth first search algorithm to
construct the corresponding generalized Büchi automaton [6]
that goes through a simple degeneralization transformation
[28] to result in a classical Büchi automaton. Consequently,
Sechduler translates the generated Büchi automaton into a
deterministic state machine using the well-known power set
construction algorithm [1], [2]. Finally, to minimize the size of
the generated automaton, and hence the performance overhead
of the Sechduler framework on the target system, Sechduler
also implement a minimization algorithm [10] to produce the
automaton with provably minimum number of states for the
initial given system security predicate.

Specifically, Sechduler generates two separate Büchi au-
tomata B(ϕ) and B(¬ϕ) that accept all models of ϕ and
¬ϕ (that falsify ϕ), respectively. Let us define F(ϕ) to be
the set of states qi in the automaton B(ϕ) for which the
language of the automaton starting in state qi is not empty,
i.e., L(BQ0=qi(ϕ)) = /0. Employing the Tarjan’s algorithm [27]
to obtain F(.), Sechduler, at each time instant, evaluates the
current finite prefix of the system scheduling activities as
follows:

[υ � ϕ] =

⎧⎪⎨
⎪⎩

true if υ /∈ L(BF(¬ϕ)),
false if υ /∈ L(BF(ϕ)),

inconclusive if υ ∈(
L(BF(¬ϕ))∩L(BF(ϕ))

)
,

(5)

where BF(ϕ) = (Σ,Q,Q0,δ,F(ϕ)) and BF(¬ϕ) =
(Σ,Q,Q0,δ,F(¬ϕ)). Putting it in words, the first condition
assigns the value true to those system activities trace prefixes
υ that cannot satisfy the automaton BF(¬ϕ) under any
possible future trace continuation (suffix), and therefore will
always satisfy BF(ϕ). The second line targets the prefixes
that result in the value false. The remaining prefixes are
assigned the value inconclusive due to the lack of sufficient
information so far.

Given the produced non-deterministic automata BF(ϕ) and
BF(¬ϕ), Sechduler implements the power set construction
procedure to construct the corresponding deterministic mod-
els BF

d (ϕ) and BF
d (¬ϕ) that accept provably exact same

languages. Finally, Sechduler generates the scheduler finite
state machine monitor as the product of the two automata
M(ϕ) = (Σ,Q,Q0,δ,λ), where Q = QBF (ϕ) ×QBF (¬ϕ); Q0 =
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(Q0BF (ϕ)
,Q0BF (¬ϕ)

); δ((q,q′),a) = (δBF (ϕ)(q,a),δBF (=ϕ)(q,a)), and

λ is defined as

[λ((q,q′)) =

⎧⎪⎨
⎪⎩

true if q′ /∈ Fd(¬ϕ),
false if q /∈ Fd(ϕ),

inconclusive if q ∈ Fd(ϕ)
and q′ ∈ Fd(¬ϕ).

(6)

Consequently, as discussed in the next section, Sechduler en-
hances the operating system kernel using the generated state-
based scheduler security monitor M(ϕ) to guarantee runtime
system-wide security according to the predefined temporal
policies.

VI. RUNTIME POLICY ENFORCEMENT

Dynamic Verification. Once the monitor is constructed,
Sechduler compiles it as a Linux kernel module and loads it on
the running kernel dynamically. Therefore, at any time instant,
there is a possibly empty conjunctive linear temporal logic-
based monitor loaded on the kernel that Sechduler must en-
force by tracing, and if necessary intercepting and modifying,
the kernel’s task scheduling decisions. In particular, Sechduler
puts a checking point between a) the kernel scheduler’s
individual decisions upon which task should be given the CPU
access to execute and b) the actual CPU allocation. Before
the actual CPU allocation, Sechduler assumes that the task is
given the CPU access and updates the temporal logic-based
monitor’s current state accordingly. Consequently, Sechduler
checks the monitor’s current state value and allows the kernel
to proceed with the CPU allocation only if the monitor returns
either true or inconclusive. Otherwise, i.e. if it returns false,
Sechduler denies the CPU access request, undoes the monitor
state update, and selects the next most demanding waiting task
following the original scheduling algorithm.

Policy Revocation. Using a three-valued formal logic,
dynamic assessment of each monitor results in one of the true,
false, or inconclusive values during the Sechduler’s runtime
verification and enforcement. Sechduler makes use of these
values to decide upon the necessary monitor revocations, i.e.,
when the monitor is not needed anymore. In particular, a
monitor is not needed if its current state value is true that
means the policy is already satisfied according to the existing
scheduling activity prefix, i.e., sequence of the scheduled tasks
since the monitor’s loading time, regardless of the prefix’s
future continuation (suffix). When Sechduler chooses to revo-
cate a particular security monitor, it unloads its corresponding
module from the kernel dynamically and the system continues
its operation with the remaining loaded monitors.

Complexity Analysis. We provide the threoretical time
complexity analysis of different steps in Sechduler. Negation
of φ is clearly a linear operation in the size of φ. Imple-
mentation of the Büchi automaton generation requires three
lower level steps that is 1) to generate a non-determinstic
Büchi automaton resulting in an exponential time complexity
in the theoretical worst case; 2) to construct finite automaton
that does no change the size of the orginal automaton; and 3)
to generate deterministic finite automaton using the powerset
construction method that results in an exponential complexity
under worst case scenario. As discussed above, the monitor
construction algorithm cannot be completed in a practically
feasible time limit in the worst case. However, as shown by
other researchers [2] and in our evaluations for scheduling
security verification, the growth of the generated monitor sizes
is completely feasible and easy to handle in practical scenarios

to enforce temporal security requirements on a real-world test-
bed system.

VII. EVALUATIONS

We deployed Sechduler in a testbed environment and evalu-
ated various aspects of its operation. In particular, we designed
a set of experiments to empirically answer the following
questions: How efficiently does Sechduler process the given
temporal security policies and generate the corresponding
automata dynamically? How accurately can Sechduler enforce
the loaded policies within the kernel? How many task schedul-
ings will Sechduler have to monitor in a real-world setting, and
how well does Sechduler cope with the scalability problem?
How much performance overhead does Sechduler introduce
to the system’s overall throughput? How does Sechduler work
in details through a complete real-world case study scenario?
We start by describing the experimentation setup, and then
proceed to examine the abovementioned questions.

Implementations. Although Sechduler provides a unified
temporal scheduler security monitoring solution, it makes use
of several tools to accomplish its various subtasks. To this
end, Sechduler uses the LTL2BA translator that converts linear
temporal logic security formula into corresponding Büchi au-
tomata. Furthermore, Sechduler employs the LTL3tools mon-
itor generator5 that is a collection of functions that constructs
the final monitor, i.e., a Moore-type finite-state machine. For
visualization purposes, Sechduler employs the dot utility from
the Graphviz toolset to generate graphical representations of
the generated state-based monitors dynamically. Finally, to
reduce the framework’s runtime overhead, Sechduler deploys
the AT&T FSM Library to minimize the size of the generated
automaton-based monitor.

We developed a kernel module that Sechduler can load on
the running kernel dynamically and use it for runtime policy
insertions within the kernel. The module has two interfaces
that facilitates two-way dynamic communication between the
kernel’s internal functions and Sechduler’s monitor generation
engine. In particular, the module can receive the temporal
policy monitors from Sechduler’s monitor generation compo-
nent, and consequently let the running kernel know about the
updated policy that should be enforced. To make the kernel
capable of temporal security policy enforcement, we extended
the kernel’s scheduler portion and added several functionalities
to it. In particular, we modified the scheduling logic for
how different types of kernel tasks, e.g., realtime task rq_rt
and ordinary task rq_fair run-queues, were scheduled for
execution. Since the version 3.0, the Linux kernel implements
the completely fair scheduler algorithm for fair kernel task
scheduling that deploys a red-black tree data structure, where
each tree node represents a task_struct structure. Every
tree node maintains a virtual time vruntime variable that
indicates the amount of time its corresponding task has had
the CPU access for execution in the past. Once a task schedule
is needed, through the __schedule function call, the kernel
prepares the leftmost node of the tree, which by definition has
spent the least amount of time on CPU, for execution. Briefly,
our implementations intercept each individual task selection
step and double-check whether the task complies with the most
updated loaded temporal security policy. A different policy
enforcement mechanism was implemented for the kernel’s for
the realtime tasks as those tasks make use a multi-queue task

5Available at http://ltl3tools.sourceforge.net.
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never {
T0_init:
if
:: (!bash_pid4187_execution) -> goto T0_init
:: (backTracker_pid5829_completes &&
clamAV_pid3275_completes) -> goto accept_all
fi;
accept_all:
skip
}

Fig. 5. The Büchi Automaton Generation Output

selection algorithm, instead the completely-fair scheduler im-
plementation, for tasks with different realtime priority levels.
We do not present our implementation details for the realtime
task scheduler here due to the space limitations.

As Sechduler requires kernel code modifications, new vul-
nerabilities in the system may be introduced if the code is
not implemented carefully. To address this concern, we have
minimized our intra-kernel modifications and the kernel-user
space interface (< 500 LOC) and kept most of the code outside
of the kernel space.

To further facilitate the interaction among various com-
ponents of Sechduler within and outside of the kernel, we
implemented two system calls, namely int getsec(struct
task_struct *) and int setsec(struct task_struct
*, int), that allow Sechduler’s detection engine to (get) mod-
ify the running processes’ security levels such that Sechduler’s
intra-kernel scheduler can obtain such information whenever
necessary in order to make correct decisions upon whether a
particular task should be given the CPU access for execution.
For instance, Sechduler’s detection engine may set a particular
process’s security level to low and spawn a system-wide
forensics tools once the process is identified to abnormally
write to a system sensitive file. Assume that an already loaded
policy within the kernel mandates the scheduler to avoid any
process execution with a security level lower than medium.
Therefore, the abovementioned process cannot resume its
execution until Sechduler reverts the process’s security level
to high upon receipt of the mission completion and system-
is-secure confirmation message from the forensics tool.

The operating system kernel within an ordinary desktop
computer schedules more than 3K tasks per second on av-
erage. Therefore, runtime verification of each individual task
scheduling could cause high performance overhead on the
system if it is not designed properly. To this end, we developed
a cache buffer for the allowed and denied set of tasks to
accelerate the runtime system security verification procedure.
In particular, once a task is checked by the currently loaded
policy, Sechduler puts it in the cache with the time stamp
and the verification result. The next time when the task needs
verification, Sechduler checks the cache for the result, and will
redo the policy-based checking if either the task is not found
in the cache or its time stamp is older than a age threshold,
i.e., 1 seconds in our implementations. To accelerate the cache
search procedure, we have employed a hash table structure to
store the analyzed tasks. Furthermore, Sechduler periodically
goes over the cache, every 5 seconds in our implementation,
and disposes the tasks which are not active anymore, i.e., they
are not found on the any of the scheduler’s rq run-queues.
For overall performance improvement and due to the finite
number of the tasks within the kernel, i.e., often < 300, instead
of dynamic cache size allocation, we implemented a fixed
size cache, i.e., 100 entries (linked lists) which the recently
analyzed tasks are added to.

G ((receive request ∧ ¬send response ∧ F send response) →
(sensitive file access → (¬send response U (security check ∧
¬send response))) U send response)

Fig. 11. A Sample Temporal Security Policy

Experimental Results. We evaluated the accuracy and
performance of the various components of Sechduler through
an extensive set of experiments. An Ubuntu 11.10 computer
system with Intel® Core™ i7 3.4 GHz Processor and 4 GB of
memory was used for the experiments. Sechduler translates
the human-readable policy rules into monitors that can be
interpreted by the machine dynamically. As discussed, the first
step is to construct the Büchi automata B(ϕ) and B(¬ϕ). We
used an updated version of the linear temporal logic formula
illustrated in Figure 3 to construct the automata. Figure 5
shows the B(ϕ) automaton in a never claim format in Promela
[12]6 Figures 7 and 8, respectively, illustrate the generated
B(ϕ) and B(¬ϕ) automata for the given scheduler logic-based
policy rule.

We tested Sechduler for more complex temporal logic
predicates such as workflow-based security policy rules for
server systems where individual processes are spawned to
carry out a particular task, such as receive request and send
out response. In particular, an example policy may require
a security check completion after any sensitive data access
before the response is sent out to the network. The generated
automaton is illustrated in Figure 10 which includes 8 states
and 20 transitions and the original policy is shown in Figure
11. Furthermore, for a generic evaluation of the automata size
range that Sechduler has to process in real-world settings,
we measured the size of generated automata for typical and
frequently used linear temporal logic-based software specifi-
cation formula7 introduced in [7]. Table I illustrates few of the
individual temporal security policies that Sechduler selected,
combined, and used in our experiments8.

As Sechduler verifies whether each scheduled tasks should
be given CPU access, we collected statistics of the kernel-level
scheduled tasks during a normal host computer usage session.
Figure 6(b) shows the number of scheduled tasks for each
second during the session. In particular, the session included
a Web browser launch followed by an Office document editor
application spawn. As demonstrated, the number of sched-
uled tasks can go up to 18K per second during an normal
computer usage session. We measured the time requirements
for the policy-to-automata conversion for the typical linear
temporal logic-based system specification policies [7]. Figure
6(c) shows the results for individual temporal security policies.
Sechduler completed the conversion for individual temporal
requirements in approximately 0.58 seconds on average. This
suggests that Sechduler can scale well for real-world settings
where many requirements may be involved in the final logic-
based predicate.

Case Study: Sensitive File Modification. In this sec-
tion, we show how Sechduler protects a target host sys-
tem once the system is hit by a sensitive file modifica-
tion attack. Samhain was deployed as the attack conse-

6This result can be fed into the Spin model checker to verify the system
security properties in an offline manner; however, in this paper, we only focus
on the runtime verification of the system during its execution time.

7http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
(Figure 6(a)).

8The weak until operator W is related to the strong until operator U by the
following equivalences: pWq= ([]p)|(pUq) =<> (!p)→ (pUq) = pU(q|[]p).
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(b) Kernel-level Scheduled Tasks Statistics
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(c) Automaton Generation Time Requirement
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(d) Scheduling Statistics of the Trojan Firefox
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(e) Statistics on a Sechduler-Enabled Kernel
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(f) Overall Sechduler Performance Overhead

Fig. 6. Sechduler Evaluation Results

Fig. 7. The Büchi Automaton for the Predicate

Fig. 8. The Büchi Automaton for the Negative Predicate

init (inconclusive) !bash_pid4187_execution && !(backTracker_pid5829_completes && clamAV_pid3275_completes)

1 (false)

bash_pid4187_execution && !(backTracker_pid5829_completes && clamAV_pid3275_completes)

2 (true)

backTracker_pid5829_completes && clamAV_pid3275_completes

true true

Fig. 9. The Generated Scheduler Monitor to be Loaded on the Kernel

Fig. 10. The Workflow-Based Automaton to Prevent Potential Data Disclosures
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TABLE I
SOME OF THE TYPICAL TEMPORAL SECURITY POLICIES USED IN THE EXPERIMENTS

Description Policy
Process P is suspended (does not execute) [](!P)
P always executes on core 2 after Q until R [](Q&!R → (PWR))
Process P executes at some point between Q and R [](Q&!R → (!RW (P&!R)))
Processes S and T without Z execute after P [](P →<> (S&!Z&o(!ZUT )))
Process P causes execution of S and T before R <> R → ((!(S&(!R)&o(!RU(T &!R))))U(R|P))

quence detection system. Specifically, we modified its con-
figuration, i.e., /etc/samhain/samhainrc, to monitor the
files and directories in which we are interested, and con-
figured it to report events with at least crit severity level.
Before the experiments, we created its initial database,
i.e., /var/state/samhain/samhain_file, using samhain
-t init, and its database was updated, using -t update.
During the normal operational mode of the system, Samhain
was configured to check the marked sensitive files and direc-
tories against its database and fire an alert upon identifying a
modification or access (depending on the policy defined in the
configuration file).

To simulate an attack, we implemented a trojan Firefox
that modified sensitive user files that had been marked to
be monitored by Samhain. Figure 6(d) shows the malware’s
scheduling activity statistics within a non-Sechduler aware
kernel. Consequently, Samhain fired the alert illustrated by
Figure 12. Upon the receipt of the alert, Sechduler performed
three tasks. It 1) called the setsec system call and lowers
the Firefox’s security level variable within the kernel; 2)
spawned a comprehensive ClamAV virus scan on the Firefox’s
executable; and 3) compiled the triggered alert’s corresponding
policy module and loaded it on the kernel dynamically.

Enforcing the loaded policy, Sechduler manipulated the task
selection procedure within the kernel scheduler to ensure that
(from its point of view) the potentially malicious Firefox
process did not get CPU access and waited for the ClamAV’s
green light. However, in our experiments, ClamAV triggered
an alert denoting that the executable contains malicious con-
tent. Consequently, the suspended Firefox process was termi-
nated by Sechduler and its executable was removed. Figure
6(e) a different run of the trojan Firefox on a Sechduler-
enabled Linux kernel. As shown on the graph, Sechduler
denies its requests for execution since the 69-th seconds and
finally terminates the process. We implemented the process
termination as a single countermeasure action; however, more
complicated actions can be defined by policies and imple-
mented. We consider that direction outside the scope of this
paper and will investigate different possibilities as future work.

It is important that Sechduler performs the runtime sys-
tem security verification efficiently such that the system’s
overall throughout is not affected significantly. We measured
the Sechduler’s overall performace overhead on our testbed
system’s overall throughput. In particular, we employed the
ab Apache Webserver benchmarking toolset to measure the
system throughout. To make the webpage processing more
CPU-intensive, we designed a very simple HTML webpage.
For our server system, we define the overall performance
measure as the number of requests that can be processed
per second. Figure 6(f) shows how the system’s throughput
is affected by the runtime verification of individual task
scheduling decisions. We believe that the overall performance
overhead of the Sechduler solution can be further reduced
by optimizing our code. For instance, several data structures
that are searched frequently, with O(n) complexity, can be

redesigned for logarithmic search, and overal system perfor-
mance improvement.

VIII. RELATED WORK

There has been several past work on resource-aware in-
trusion detection and forensics analyses. Mukkamala et al.
[16] introduce a light-weight intrusion detection algorithm
based on artificial neural networks to discover sources of
information breaches. Carrier [5] presents an on-demand smart
filesystem-based detection techniques to determine the source
of security breaches by investigating their effects on the file-
objects, e.g., file modification dates. Taser [9] is an operator-
assisted post-intrusion forensics system based on pessimistic
taint tracking; hence, it may result in a large set of possible
attack sources. BackTracker [13] and Panorama [31] aid off-
line forensic analysis by producing taint-traces of file and
process communications that led to a detected security breach.
Additionally, few frameworks has recently been proposed for
semi-realtime system security. For instance, RRE [36] and
EliMet [34] present game-theoretic intrusion response and
recovery capabilities that are indeed best-effort solutions to
select and carry out optimal response actions, i.e., security
services and not the system’s core functionalities, as quickly
as possible. Because none of these security tools are aware
of the mission-specific realtime requirements, they focus only
on enhancement and/or maintenance of the target system’s
security, and hence do not necessarily guarantee realtime task
accomplishments.

Conventional realtime scheduling algorithms such as Rate
Monotonic (RM) algorithm [15], Earliest Deadline First (EDF)
[26], and Spring scheduling algorithm [21], [32] have been
successfully applied in realtime systems. Previous work has
been done to facilitate realtime computing in heterogeneous
systems. Huh et al. proposed an approach to dynamically
managing resources in realtime systems [11]. Santos et al.
developed a probabilistic model for a client/server multimedia
system [23]. However, most of existing realtime scheduling
algorithms perform poorly for realtime and security-critical
applications due to the oversight and ignorance of security
requirements imposed by the applications. Xie et al. [30]
extends the EDF algorithm to takes into account performance
overhead of various security solutions before their execution.
The proposed model adds up the given numeric values that
represent the individual tasks’ overheads, realtime priorities,
and the amount of their benefits to the overall system security.
The model consequently selects the task with the maximum
aggregated value of the total benefit for execution. Despite its
theoretical contributions, the solution require a lot of numeric
input values and has not been validated empirically.

The temporal dimension in access control solutions has also
attracted a great amount of interest recently. Bertino et al.
[3] introduce temporal role-based access control that supports
periodic role enabling and disabling possibly with individual
exceptions for particular users and temporal dependencies
among such actions, expressed by means of role triggers. Zhu
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CRIT: [2012-11-05T21:53:01-0500] msg= POLICY [IgnoreNone], path=/home/user/sensitive.db, inode_old=824046,
inode_new=789469, dev_old=8,1, dev_new=8,1, size_old=123, size_new=127, atime_old=[2012-11-06T02:43:54],
atime_new=[2012-11-06T02:50:58], mtime_old=[2012-11-06T02:43:45], mtime_new=[2012-11-06T02:49:44],
chksum_old=87C08...50EB7, chksum_new=F38...3E92

Fig. 12. A Sample Alert by the Samhain File Integrity Checker

et al. [33] propose a temporal attribute-based access control for
the cloud environments in which each outsourced resource is
associated with an access policy on a set of temporal attributes,
e.g., period-of-validity, opening hours, or hours of service. The
main drawback of the abovementioned solutions is that they
do not take into account the low system-level realtimeness
requirements.

Currently, to the best of our knowledge, none of the past
solutions considered both logic-based security policies and
realtimeness criteria simultaneously and efficiently proved by
a complete real-world evaluation. Furthermore, in the past
work, decisions upon the system security and the system
realtimeness were made at different semantic levels within
the target system. More specifically, there are many host-
based security solutions that monitor, analyze, detect and
respond to intrusions in application levels, whereas the system
realtimeness is usually resolved in the kernel’s scheduler;
therefore, there is no common point where the tradeoff can be
resolved optimally and efficiently. For instance, the intrusion
detection engine, due to lack of information, may choose to
launch a complete and tedious system-wide filesystem scan
when the realtime requirements are barely satisfied because
of extremely tight hard task deadlines.

IX. CONCLUSIONS

In this paper, we presented Sechduler, a security-aware
kernel scheduler that takes into account not only the realtime
requirements of the waiting tasks but also the predefined set of
temporal system-wide security policies. As empirically shown,
Sechduler can efficiently process and enforce the predefined
temporal security policies. We believe that Sechduler opens
a new research direction to formally consider realtime and
security requirements of a target system simultaneously and
adaptively within the operating system kernel. As future work,
we currently investigate the possibility of offline formal and
combined realtimeness-security verification of a given system.
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