Bayclone: Bayesian nonparametric inference of tumor subclones using NGS data

Subhajit Sengupta, Jin Wang, Juhee Lee, Peter Müller, Kamalakar Gulukota, Arunava Banerjee, Yuan Ji
2015 Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing  
In this paper, we present a novel feature allocation model to describe tumor heterogeneity (TH) using next-generation sequencing (NGS) data. Taking a Bayesian approach, we extend the Indian buffet process (IBP) to define a class of nonparametric models, the categorical IBP (cIBP). A cIBP takes categorical values to denote homozygous or heterozygous genotypes at each SNV. We define a subclone as a vector of these categorical values, each corresponding to an SNV. Instead of partitioning somatic
more » ... titioning somatic mutations into non-overlapping clusters with similar cellular prevalences, we took a different approach using feature allocation. Importantly, we do not assume somatic mutations with similar cellular prevalence must be from the same subclone and allow overlapping mutations shared across subclones. We argue that this is closer to the underlying theory of phylogenetic clonal expansion, as somatic mutations occurred in parent subclones should be shared across the parent and child subclones. Bayesian inference yields posterior probabilities of the number, genotypes, and proportions of subclones in a tumor sample, thereby providing point estimates as well as variabilities of the estimates for each subclone. We report results on both simulated and real data. BayClone is available at http://health.bsd.uchicago.edu/yji/soft.html.
pmid:25592605 fatcat:35mpchd26varxcaljowxgkaz24