RatHat: A self-targeting printable brain implant system [article]

Leila Mangan Allen, Maanasa Jayachandran, Tatiana D Viena, Meifung Su, Timothy Alexander Allen
2019 bioRxiv   pre-print
There has not been a major change in how neuroscientists approach stereotaxic methods in decades. Here we present a new stereotaxic method that improves on traditional approaches by reducing costs, training, surgical time, and aiding repeatability. The RatHat brain implantation system is a 3D printable stereotaxic device for rats that is fabricated prior to surgery and fits to the shape of the skull. RatHat builds are directly implanted into the brain without the need for head-leveling or
more » ... d-leveling or coordinate-mapping during surgery. The RatHat system can be used in conjunction with the traditional u-frame stereotaxic device, but does not require the use of a micromanipulator for successful implantations. Each RatHat system contains several primary components including the implant for mounting intracranial components, the surgical stencil for targeting drill sites, and the protective cap for impacts and debris. Each component serves a unique function and can be used together or separately. We demonstrate the feasibility of the RatHat system in four different proof-of-principle experiments: 1) a 3-pole cannula apparatus, 2) an optrode-electrode assembly, 3) a fixed-electrode array, and 4) a tetrode hyperdrive. Implants were successful, durable, and long-lasting (up to 9 months). RatHat print files are easily created, can be modified in CAD software for a variety of applications, and are easily shared, contributing to open science goals and replications. The RatHat system has been adapted to multiple experimental paradigms in our lab and should be a useful new way to conduct stereotaxic implant surgeries in rodents.
doi:10.1101/868422 fatcat:dk2tehmemvcrlhiywwacuz5uf4