A Novel Machine Language-Driven Data Aggregation Approach to Predict Data Redundancy in IoT-Connected Wireless Sensor Networks

G. C. Jagan, P. Jesu Jayarin, Yan Huang
2022 Wireless Communications and Mobile Computing  
Real world data aggregation and delivery in Internet of Things (IoT) technology are essential to predict and retrieve target data in short time so that the end user feels no delay but ensures a high quality of information. In addition to habitat monitoring and disaster management, these networks have a wide range of other uses, including security and military operations. The processing capabilities of sensor nodes are restricted due to the fact that they have a limited battery life and hence a
more » ... odest size and processing capacity. WSNs are also susceptible to failure as a result of the limited battery power available. In WSNs, data aggregation is practiced as an energy efficient strategy to reduce computing and transmission latency. It is because of sensor node distribution density that shares the same data at a time data redundancy comes to exist. It is possible to reduce redundancy by adopting a suitable machine learning algorithm while executing the data aggregation process. Researchers are still chasing behind algorithms and modeling strategies effectively to ease the process of developing an effective and acceptable data aggregation strategy from existing wireless sensor network (WSN) models. A three stage framework is proposed for an efficient data aggregation mechanism, and the stages are Modified LEACH, extreme learning machines (ELM), adaptive Kalman filter, and Bi-LSTM. This experiment result shows better performance than the existing methods.
doi:10.1155/2022/7096561 fatcat:tu6stlzg2zg5bfwig23dnbuw6a