Security Architecture, Trust Management Model with Risk Evaluation and Node Selection Algorithm for WSN [chapter]

Bin Ma, Xianzhong Xie
2010 Smart Wireless Sensor Networks  
And so, all nodes share common sensing tasks in wireless sensor networks. This implies that not all sensors are required to perform the sensing task during the whole system lifetime. Turning off some nodes does not affect the overall system function as long as there are enough working nodes to assure it. Therefore, if we can schedule sensors to work alternatively, the system lifetime can be prolonged by exploiting redundancy. In this chapter,we present a cross-layer trust management model based
more » ... on cloud model; and using the trust model, we innovate an algorithm of node selection in Wireless sensor networks. The rest of the chapter is structured as follows. In the beginning we introduce wireless sensor networks. Furthermore, A discussion of related work for security architecture and trust management model. Thereafter, we provide a unique security requirements of WSNs and present a security architecture for wireless sensor networks that addresses most of the problems above, also describe the technical aspects of our security architecture. Subsequently, we utilizes lightweight trust management model that allow for easy access control between the mobile sensor nodes and secure the communication inside the network. Furthermore, it minimizes the effects of compromised sensor nodes. The recent development of communication and sensor technology results in the growth of a new attractive and challenging area â€" wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes' resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks.
doi:10.5772/13765 fatcat:2rcyfuuq5ndtjnmfemnzwmsuzy