Development of a Microfluidic Platform for Trace Lipid Analysis [post]

Andrew Davic, Michael Cascio
2020 unpublished
The inherent trace quantity of primary fatty acid amides found in biological systems presents challenges for analytical analysis and quantitation, requiring a highly sensitive detection system. The use of microfluidics provides a green sample preparation and analysis technique through small-volume fluidic flow through micron-sized channels embedded in a PDMS device. Microfluidics provides the potential of having a micro total analysis system where chromatographic separation, fluorescent tagging
more » ... fluorescent tagging reactions, and detection are accomplished with no added sample handling. This study describes the development and optimization of a microfluidic-laser indued fluorescence (LIF) analysis and detection system that can be used for the detection of ultra-trace levels of fluorescently tagged primary fatty acid amines. A PDMS microfluidic device was designed and fabricated to incorporate droplet-based flow. Droplet microfluidics have enabled on-chip fluorescent tagging reactions to be performed quickly and efficiently, with no additional sample handling. An optimized LIF optical detection system provided fluorescently tagged primary fatty acid amine detection sub-fmol (436 amol) LODs. The use of this LIF detection provides unparalleled sensitivity, with detection limits several orders of magnitude lower than currently employed LC-MS techniques and might be easily adapted for use as a complementary quantification platform for parallel MS-based -omics studies.
doi:10.20944/preprints202010.0031.v1 fatcat:kqssivahxfgydb3gcoa6amj4qm