Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory

Salvatore Torquato, A Scardicchio, Chase E Zachary
2008 Journal of Statistical Mechanics: Theory and Experiment  
It is well known that one can map certain properties of random matrices, fermionic gases, and zeros of the Riemann zeta function to a unique point process on the real line. Here we analytically provide exact generalizations of such a point process in d-dimensional Euclidean space for any d, which are special cases of determinantal processes. In particular, we obtain the n-particle correlation functions for any n, which completely specify the point processes. We also demonstrate that
more » ... ed fermionic systems have these same n-particle correlation functions in each dimension. The point processes for any d are shown to be hyperuniform. The latter result implies that the pair correlation function tends to unity for large pair distances with a decay rate that is controlled by the power law r^[-(d+1)]. We graphically display one- and two-dimensional realizations of the point processes in order to vividly reveal their "repulsive" nature. Indeed, we show that the point processes can be characterized by an effective "hard-core" diameter that grows like the square root of d. The nearest-neighbor distribution functions for these point processes are also evaluated and rigorously bounded. Among other results, this analysis reveals that the probability of finding a large spherical cavity of radius r in dimension d behaves like a Poisson point process but in dimension d+1 for large r and finite d. We also show that as d increases, the point process behaves effectively like a sphere packing with a coverage fraction of space that is no denser than 1/2^d.
doi:10.1088/1742-5468/2008/11/p11019 fatcat:hmvcpz2yxjfhhohqs4e5yx2ny4