Quantitative Analysis of Tectonic Geomorphology Research Based on Web of Science from 1981 to 2021

Zhiheng Liu, Suiping Zhou, Hang Yu, Wenjie Zhang, Fengcheng Guo, Xuemei Chen, Jianhua Guo
2022 Remote Sensing  
Tectonic geomorphology is an important research area that uses multisource data to quantify the landscape response induced by the interaction between the tectonic uplift and climate changes. In this study, a comprehensive and quantitative analysis using bibliometric and scientometrics based on the research areas, countries, institutions, journals, authors, keywords, and citations is carried out, which provides an exhaustive history of tectonic geomorphology, and points out the hopspots and
more » ... s in the research area. A total of 2796 papers and 110,111 references from 1981 to 2021 are collected from Science Citation Index-Expanded (SCI-E) as the main data source. The results show that with the development of remote sensing, tectonic geomorphology, and the improvement of instruments and equipment, the amount of tectonic geomorphology analysis has been increasing. The journal Geomorphology is one of the most popular journals in this field. Through the co-occurrence network analysis, 12 clusters are identified in which the most popular research hotspot in tectonic geomorphology research is how to constrain the rates of active faulting using geomorphic indices. Through literature co-citation analysis, 13 research directions are extracted in which an important trend is to investigate the response of drainage divide migration to the fault slip rates. With the help of remote sensing data, physical attributes, and contextual knowledge, the reliability of measuring uplift rates under tectonic and climate changes has been increased. A future suggestion is to use multi-source heterogeneous data fusion to conduct quantitative analysis for tectonic geomorphology research.
doi:10.3390/rs14205227 fatcat:e4r3mjj7vfbnlluhudxi6qvgje