Biologically Inspired Motion Encoding for Robust Global Motion Estimation

Evangelos Sariyanidi, Hatice Gunes, Andrea Cavallaro
2017 IEEE Transactions on Image Processing  
The growing use of cameras embedded in autonomous robotic platforms and worn by people is increasing the importance of accurate global motion estimation (GME). However, existing methods may degrade considerably under illumination variations. In this paper, we address this problem by proposing a biologically-inspired GME method that achieves high estimation accuracy in the presence of illumination variations. We mimic the early layers of the human visual cortex with the spatio-temporal Gabor
more » ... on energy by adopting the pioneering model of Adelson and Bergen and we provide the closed-form expressions that enable the study and adaptation of this model to different application needs. Moreover, we propose a normalisation scheme for motion energy to tackle temporal illumination variations. Finally, we provide an overall GME scheme which, to the best of our knowledge, achieves the highest accuracy on the Pose, Illumination, and Expression (PIE) database.
doi:10.1109/tip.2017.2651394 pmid:28129154 fatcat:qi7ixrpaqndcxgbjjda6ftgtxy