Novel Insights into the Hydroxylation Behaviors of α-Quartz (101) Surface and its Effects on the Adsorption of Sodium Oleate

Zhang, Xu, Hu, He, Tian, Zhou, Chen, Chen, Chen, Sun
2019 Minerals  
A scientific and rigorous study on the adsorption behavior and molecular mechanism of collector sodium oleate (NaOL) on a Ca2+-activated hydroxylated α-quartz surface was performed through experiments and density functional theory (DFT) simulations. The rarely reported hydroxylation behaviors of water molecules on the α-quartz (101) surface were first innovatively and systematically studied by DFT calculations. Both experimental and computational results consistently demonstrated that the
more » ... ed calcium species onto the hydroxylated structure can significantly enhance the adsorption of oleate ions, resulting in a higher quartz recovery. The calculated adsorption energies confirmed that the adsorbed hydrated Ca2+ in the form of Ca(H2O)3(OH)+ can greatly promote the adsorption of OL− on hydroxylated quartz (101). In addition, Mulliken population analysis together with electron density difference analysis intuitively illustrated the process of electron transfer and the Ca-bridge phenomenon between the hydroxylated surface and OL− ions. This work may offer new insights into the interaction mechanisms existing among oxidized minerals, aqueous medium, and flotation reagents.
doi:10.3390/min9070450 fatcat:pk6vybxp3jafdjn2ohqa5vytjq