A survey of few-shot learning in smart agriculture: developments, applications, and challenges

Jiachen Yang, Xiaolan Guo, Yang Li, Francesco Marinello, Sezai Ercisli, Zhuo Zhang
<span title="2022-03-05">2022</span> <i title="Springer Science and Business Media LLC"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/r7g2xzafrze7jhzts3tizvsi7e" style="color: black;">Plant Methods</a> </i> &nbsp;
AbstractWith the rise of artificial intelligence, deep learning is gradually applied to the field of agriculture and plant science. However, the excellent performance of deep learning needs to be established on massive numbers of samples. In the field of plant science and biology, it is not easy to obtain a large amount of labeled data. The emergence of few-shot learning solves this problem. It imitates the ability of humans' rapid learning and can learn a new task with only a small number of
more &raquo; ... beled samples, which greatly reduces the time cost and financial resources. At present, the advanced few-shot learning methods are mainly divided into four categories based on: data augmentation, metric learning, external memory, and parameter optimization, solving the over-fitting problem from different viewpoints. This review comprehensively expounds on few-shot learning in smart agriculture, introduces the definition of few-shot learning, four kinds of learning methods, the publicly available datasets for few-shot learning, various applications in smart agriculture, and the challenges in smart agriculture in future development.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s13007-022-00866-2">doi:10.1186/s13007-022-00866-2</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/35248105">pmid:35248105</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC8897954/">pmcid:PMC8897954</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/oeip3xmdk5d3bdoki6otzpvsha">fatcat:oeip3xmdk5d3bdoki6otzpvsha</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220307102318/https://plantmethods.biomedcentral.com/track/pdf/10.1186/s13007-022-00866-2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/6e/12/6e12444b171b545013bb7a0bee0cf3124328b971.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s13007-022-00866-2"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897954" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>