Neutron-Proton cross section measurements in the intermediate energy range

Richard Kirk Keeler
1981
Measurements of the angular distribution and total reaction rate in neutron-proton scattering are described. The emphasis of this work has been to obtain an accurate normalization of the distribution, which is difficult to achieve with neutral beams. Nearly monoenergetic neutrons from the d(p,n)pp reaction were scattered from a liquid hydrogen target. The neutron beam energy was determined from the time of flight with respect to the radio frequency signal of the TRIUMF cyclotron. The
more » ... ron. The differential cross section was measured at 319 and 493 MeV from 10 to 180 degrees in the centre of mass (CM.). Calibrated neutron beam monitors upstream of the scattering target provided an absolute normalization over the whole angular range. Between 10 and 100 degrees CM. a neutron detector consisting of a charged particle veto, a carbon convertor and two trigger scintillators sandwiching 7 multiwire proportional chambers was used to select elastic neutrons by time of flight techniques. The neutron angular distribution was measured with an average precision of 5% and an uncertainty on the normalization of 1.3%. An associated particle experiment (neutrons and recoil protons detected in coincidence) determined the efficiency of the neutron detector and the monitors were calibrated by measuring the incident neutron flux with the neutron detector in the beam, i.e. at zero degrees. The recoil protons were detected in the angular range between 60 and 180 degrees CM. with a precision of 1% to 2% and an error on the normalization of 2.8% at 319 MeV and 3.7% at 493 MeV. Elastic events were selected by time of flight and by either a measurement of magnetic rigidity (momentum) or total energy. The absolute normalization of the two experimental techniques is verified by the overlap of the two measurements and by comparing the integrated differential cross section with the measured total cross section. The neutron-proton total cross section was measured at six energies between 200 and 500 MeV by a transmission type experiment to a precision [...]
doi:10.14288/1.0085516 fatcat:3tyfzx2tyng3vjakoab2qwzmoi