A Self‐Consistent Study of Triaxial Black Hole Nuclei

M. Y. Poon, David Merritt
2004 Astrophysical Journal  
We construct models of triaxial galactic nuclei containing central black holes using the method of orbital superposition, then verify their stability by advancing N-body realizations of the models forward in time. We assume a power-law form for the stellar density, rho ~ 1/r and 1/r^2; these correspond approximately to the nuclear density profiles of bright and faint galaxies respectively. Equidensity surfaces are ellipsoids with fixed axis ratios. The central black hole is represented by a
more » ... onian point mass. We consider three triaxial shapes: almost prolate, almost oblate and maximally triaxial. Two kinds of orbital solution are attempted for each mass model: the first including only regular orbits, the second including chaotic orbits as well. We find that stable configurations exist in the maximally triaxial and nearly-oblate cases; however steady-state solutions in the nearly-prolate geometry could not be found. A large fraction of the mass, of order 50% or more, could be assigned to the chaotic orbits without inducing evolution. Our results demonstrate that triaxiality may persist even within the sphere of influence of the central black hole, and that chaotic orbits may constitute an important building block of galactic nuclei.
doi:10.1086/383190 fatcat:wm6l3qhntfcy5jfml7dugvfbgm