Spatio-temporal observations of tertiary ozone maximum

V. F. Sofieva, E. Kyrölä, P. T. Verronen, A. Seppälä, J. Tamminen, D. R. Marsh, A. K. Smith, J.-L. Bertaux, A. Hauchecorne, F. Dalaudier, D. Fussen, F. Vanhellemont (+5 others)
2009 Atmospheric Chemistry and Physics Discussions  
et al.. Spatio-temporal observations of the tertiary ozone maximum. Abstract. We present spatio-temporal distributions of the tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ∼72 km. Although the explanation for this phenomenon has been found recently -low concentrations of odd-hydrogen cause the subsequent
more » ... se in odd-oxygen losses -models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatiotemporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Correspondence to: V. F. Sofieva ( Since ozone in the mesosphere is very sensitive to HO x concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HO x enhancement from the increased ionization.
doi:10.5194/acpd-9-6597-2009 fatcat:txps7u3cgbflxcosxp5dktvjya