Belief propagation in monoidal categories

Jason Morton
<span title="2014-12-28">2014</span> <i title="Open Publishing Association"> <a target="_blank" rel="noopener" href="" style="color: black;">Electronic Proceedings in Theoretical Computer Science</a> </i> &nbsp;
We discuss a categorical version of the celebrated belief propagation algorithm. This provides a way to prove that some algorithms which are known or suspected to be analogous, are actually identical when formulated generically. It also highlights the computational point of view in monoidal categories.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.4204/eptcs.172.18</a> <a target="_blank" rel="external noopener" href="">fatcat:fa37qdcblbfwpndjwedbzziowi</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / </button> </a>