Deterministic numerical solution of the Boltzmann transport equation [thesis]

Karl Rupp, Tibor Grasser, Christoph Jungemann
2011
Die kleinen Abmessungen moderner Halbleiterbauelemente machen eine direkte Messung von Ladungstransportdetails unmöglich. Eine präzise Simulation des Ladungsträgertransports im Inneren des Bauelements ist daher für das Verstehen der physikalischen Vorgänge und für weitere Effizienzsteigerungen unerlässlich. Für diesen Zweck ist das Drift-Diffusionsmodell lange das Zugpferd der Halbleitersimulation gewesen, allerdings verliert es durch die voranschreitende Miniaturisierung und der einhergehended
more » ... Reduktion der Streuung von Ladungsträgern am Kristallgitter oder anderen Ladungsträgern seine Gültigkeit.Der genannte Genauigkeitsverlust kann durch eine Lösung der Boltzmannschen Transportgleichung anstelle der von ihr abgeleiteten vereinfachten Transportmodelle kompensiert werden, solange Quanteneffekte hinreichend klein sind. Die Hochdimensionalität der Boltzmannschen Transportgleichung macht eine direkte numerische Lösung jedoch sehr diffizil. Aus diesem Grund hat sich die stochastische Monte Carlo Methode etabliert, die die Berücksichtigung vieler Details erlaubt, aber zu langen Rechenzeiten führt und andere Nachteile mit sich bringt, welche in dieser Form bei makroskopischen Transportmodellen nicht auftreten. Der im Rahmen dieser Arbeit behandelte deterministische numerische Lösungsansatz mittels einer Entwicklung in harmonische Kugelflächenfunktionen leidet nicht unter den Nachteilen der Monte Carlo Methode, gleichzeitig kann aber eine praktisch gleiche Genauigkeit erreicht werden.Im Laufe dieser Arbeit werden weitere Verbesserungen der Methode der Entwicklung in harmonische Kugelflächenfunktionen vorgeschlagen. Zuerst wird eine Erweiterung auf Streuungen zwischen Ladungsträgern präsentiert, die auch für höhere Entwicklungsgrade arbeitet. Danach wird die Struktur der resultierenden Gleichungen untersucht und eine Methode zur effizienten Speicherung der Systemmatrix vorgestellt. Im Anschluss werden Erweiterungen auf unstrukturierte Gitter unter der Verwendung beliebiger Entwicklungsgrade vorgeschlagen. Um den [...]
doi:10.34726/hss.2011.24957 fatcat:7q3skq4elfehtdjizkjqofxgtq