Efficient Snapshot Retrieval over Historical Graph Data [article]

Udayan Khurana, Amol Deshpande
2012 arXiv   pre-print
We address the problem of managing historical data for large evolving information networks like social networks or citation networks, with the goal to enable temporal and evolutionary queries and analysis. We present the design and architecture of a distributed graph database system that stores the entire history of a network and provides support for efficient retrieval of multiple graphs from arbitrary time points in the past, in addition to maintaining the current state for ongoing updates.
more » ... r system exposes a general programmatic API to process and analyze the retrieved snapshots. We introduce DeltaGraph, a novel, extensible, highly tunable, and distributed hierarchical index structure that enables compactly recording the historical information, and that supports efficient retrieval of historical graph snapshots for single-site or parallel processing. Along with the original graph data, DeltaGraph can also maintain and index auxiliary information; this functionality can be used to extend the structure to efficiently execute queries like subgraph pattern matching over historical data. We develop analytical models for both the storage space needed and the snapshot retrieval times to aid in choosing the right parameters for a specific scenario. In addition, we present strategies for materializing portions of the historical graph state in memory to further speed up the retrieval process. Secondly, we present an in-memory graph data structure called GraphPool that can maintain hundreds of historical graph instances in main memory in a non-redundant manner. We present a comprehensive experimental evaluation that illustrates the effectiveness of our proposed techniques at managing historical graph information.
arXiv:1207.5777v1 fatcat:3g2nwuo6gnh4vjzug7qb43vwzu