Specularizer : Detecting Speculative Execution Attacks via Performance Tracing [chapter]

Wubing Wang, Guoxing Chen, Yueqiang Cheng, Yinqian Zhang, Zhiqiang Lin
2021 Lecture Notes in Computer Science  
AbstractThis paper presents Specularizer, a framework for uncovering speculative execution attacks using performance tracing features available in commodity processors. It is motivated by the practical difficulty of eradicating such vulnerabilities in the design of CPU hardware and operating systems and the principle of defense-in-depth. The key idea of Specularizer is the use of Hardware Performance Counters and Processor Trace to perform lightweight monitoring of production applications and
more » ... e use of machine learning techniques for identifying the occurrence of the attacks during offline forensics analysis. Different from prior works that use performance counters to detect side-channel attacks, Specularizer monitors triggers of the critical paths of the speculative execution attacks, thus making the detection mechanisms robust to different choices of side channels used in the attacks. To evaluate Specularizer, we model all known types of exception-based and misprediction-based speculative execution attacks and automatically generate thousands of attack variants. Experimental results show that Specularizer yields superior detection accuracy and the online tracing of Specularizer incur reasonable overhead.
doi:10.1007/978-3-030-80825-9_8 fatcat:hqxoye425vcgjcbsgqcypa2jbi