A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
[article]
2020
We prove that the reproducing kernel Hilbert spaces (RKHS) of a deep neural tangent kernel and the Laplace kernel include the same set of functions, when both kernels are restricted to the sphere $\mathbb{S}^{d-1}$. Additionally, we prove that the exponential power kernel with a smaller power (making the kernel less smooth) leads to a larger RKHS, when it is restricted to the sphere $\mathbb{S}^{d-1}$ and when it is defined on the entire $\mathbb{R}^d$.
doi:10.48550/arxiv.2009.10683
fatcat:mkzygaihvffoxfrb4pty47skve