Untersuchung Ceroxid-basierter Modellkatalysatoren [article]

Martin Baron, Humboldt-Universität Zu Berlin, Humboldt-Universität Zu Berlin
2017
Heterogenous catalysis is a key technology in chemical industry. Cerium oxide is used for a number of catalytic reactions. Due to its good oxygen-storage capabilities, it is mostly used in oxidation reactions. In comparison to other materials cerium oxide, as a support for gold and vanadium oxide, shows the highest activity. These systems were successfully prepared as model catalysts for investigation with surface science techniques (LEED, STM, PES, IRAS). Therefore a reliable recipe was
more » ... e recipe was developed for the preparation of CeO2(111) thin films on Ru(0001) and CeOx nanoparticles on monolayer crystalline silicon oxide films on Mo(112). These substrates were characterized using PES, STM, and IRAS measurements. In a comparative study, gold deposited on cerium oxide nanoparticles was shown to exhibit a much stronger interaction than on cerium oxide thin films. On cerium oxide nanoparticles, the gold preferentially binds to the nanoparticle surfaces and stabilizes partially-charged Au delta+-species. By means of combined STM, PES und IRAS measurements, together with DFT calculations by the research group of J. Sauer from the Humboldt-Universität zu Berlin, the atomic structure of the so-called vanadium oxide – "monolayer" – catalyst has been resolved. A direct relationship between the nuclearity of vanadium oxide species on the surface and the vanadyl frequency was then established. It was shown, that the vanadium oxide monomers (observed at low coverages) consist of vanadyl-terminated VO4 tetrahedra. The monomers were observed to aglomerate mostly to trimers and heptamers by coverage or temperature increase. The vanadium atoms in these species are stabilized in the oxidation state 5+ by the simultaneous reduction of cerium ions in the cerium oxide substrate from the oxidation state +4 to +3, both in oxygen atmosphere and under UHV conditions.
doi:10.18452/16154 fatcat:wqpaw7tthbeh7plm2sf3xfqeoa