A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Mayer-Vietoris property for relative symplectic cohomology
[article]
2020
arXiv
pre-print
In this paper, we construct a Hamiltonian Floer theory based invariant called relative symplectic cohomology, which assigns a module over the Novikov ring to compact subsets of closed symplectic manifolds. We show the existence of restriction maps, and prove some basic properties. Our main contribution is to identify a natural geometric situation in which relative symplectic cohomology of two subsets satisfy the Mayer-Vietoris property. This is tailored to work under certain integrability
arXiv:1806.00684v3
fatcat:prfdodpplfbfrnupkohdtk4phq