A 3D map of englacial attenuation rate from radar reflections at Law Dome, East Antarctica [post]

Syed Abdul Salam, Jason L. Roberts, Felicity S. McCormack, Richard Coleman, Jacqueline A. Halpin
2020 unpublished
Abstract. The East Antarctic Ice Sheet (EAIS) is the largest source of potential sea-level rise, containing approximately 52 m of sea-level equivalent. To constrain estimates of sea-level rise into the future requires knowledge of ice-sheet properties and geometry and ice-penetrating radar offers a means to estimate these properties (e.g. ice thickness, englacial temperatures). One of the regions that have been extensively surveyed using ice-penetrating radar from the Investigating the
more » ... gating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP) project in East Antarctica is Law Dome, a small independent ice cap situated to the west of Totten Ice Shelf. The ice cap is slow-moving, has a low melt-rate at the surface and moderate wind speeds, making it a useful study site for estimating the radar attenuation. A new method is proposed for the estimation of attenuation rate from radar data which is mathematically modelled as a constrained regularised l2 minimisation problem. In the proposed method, only radar data is required and the englacial reflectors are automatically detected from the radar data itself. To validate our methodology, attenuation differences at flight crossover points are calculated and statistical analyses performed to assess the accuracy of the results. For spatial analyses, the errors are of the order 22.6 %, 15.2 %, and 32.8 % for mean absolute error, median absolute error, and root mean square error respectively. Also, for the depth analyses, up to the depth of 800 m, the errors are under 29.9 %, 24.2 %, and 38.8 % for mean absolute error, median absolute error, and root mean square error respectively. A final product of 3D attenuation rates and uncertainty estimates is provided. The generated dataset is publicly available at https://doi.org/10.25959/5e6851e266f4a (Abdul Salam, 2020).
doi:10.5194/essd-2020-146 fatcat:j37qo2e3wrfpdd2biv4zxtlpom