Confinement of phonon propagation in laser deposited tungsten/polycarbonate multilayers

Florian Döring, Henning Ulrichs, Sinja Pagel, Markus Müller, Maria Mansurova, Matthias Müller, Christian Eberl, Torben Erichsen, Dennis Huebner, Philipp Vana, Klaus Mann, Markus Münzenberg (+1 others)
2016 New Journal of Physics  
Nanoscale multilayer thin films of W and PC (Polycarbonate) show, due to the great difference of the components' characteristics, fascinating properties for a variety of possible applications and provide an interesting research field, but are hard to fabricate with low layer thicknesses. Because of the great acoustic mismatch between the two materials, such nanoscale structures are promising candidates for new phononic materials, where phonon propagation is strongly reduced. In this article we
more » ... how for the first time that W/PC-multilayers can indeed be grown with high quality by pulsed laser deposition. We analyzed the polymer properties depending on the laser fluence used for deposition, which enabled us to find best experimental conditions for the fabrication of high-acoustic-mismatch W/PC multilayers. The multilayers were analyzed by fs pump-probe spectroscopy showing that phonon dynamics on the ps time-scale can strongly be tailored by structural design. While already periodic multilayers exhibit strong phonon localization, especially aperiodic structures present outstandingly low phonon propagation properties making such 1D-layered W/PC nano-structures interesting for new phononic applications.
doi:10.1088/1367-2630/18/9/092002 fatcat:uixrdfmwufbsto4i52lfpgvkzq