Reciprocity between local moments and collective magnetic excitations in the phase diagram of BaFe2(As1−xPx)2

Jonathan Pelliciari, Kenji Ishii, Yaobo Huang, Marcus Dantz, Xingye Lu, Paul Olalde-Velasco, Vladimir N. Strocov, Shigeru Kasahara, Lingyi Xing, Xiancheng Wang, Changqing Jin, Yuji Matsuda (+3 others)
2019 Communications Physics  
Unconventional superconductivity arises at the border between the strong coupling regime with local magnetic moments and the weak coupling regime with itinerant electrons, and stems from the physics of criticality that dissects the two. Unveiling the nature of the quasiparticles close to quantum criticality is fundamental to understand the phase diagram of quantum materials. Here, using resonant inelastic x-ray scattering (RIXS) and Fe-K_β emission spectroscopy (XES), we visualize the
more » ... e and evolution of local magnetic moments and collective spin excitations across the superconducting dome in isovalently-doped BaFe_2(As_1-xP_x)_2 (0.00≤x≤0.52). Collective magnetic excitations resolved by RIXS are gradually hardened, whereas XES reveals a strong suppression of the local magnetic moment upon doping. This relationship is captured by an intermediate coupling theory, explicitly accounting for the partially localized and itinerant nature of the electrons in Fe pnictides. Finally, our work identifies a local-itinerant spin fluctuations channel through which the local moments transfer spin excitations to the particle-hole (paramagnons) continuum across the superconducting dome.
doi:10.1038/s42005-019-0236-3 fatcat:5bubtyzcsfarfpnk6xzeromc74