A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Anderson Localization of Expanding Bose-Einstein Condensates in Random Potentials
2007
Physical Review Letters
We show that the expansion of an initially confined interacting 1D Bose-Einstein condensate can exhibit Anderson localization in a weak random potential with correlation length \sigma_R. For speckle potentials the Fourier transform of the correlation function vanishes for momenta k > 2/\sigma_R so that the Lyapunov exponent vanishes in the Born approximation for k > 1/\sigma_R. Then, for the initial healing length of the condensate \xi > \sigma_R the localization is exponential, and for \xi < \sigma_R it changes to algebraic.
doi:10.1103/physrevlett.98.210401
pmid:17677751
fatcat:mmky7bbm6ngbtdzxopld4q5rj4