Novel Design of a Highly Sensitive RF Strain Transducer for Passive and Remote Sensing in Two Dimensions

Trang T. Thai, Herve Aubert, Patrick Pons, Gerald DeJean, Manos M.Tentzeris, Robert Plana
2013 IEEE transactions on microwave theory and techniques  
A novel design of a highly sensitive wireless passive RF strain transducer is presented based on a patch antenna loaded with an open loop that is capable of sensing strain independently in two directions. An original idea of utilizing a cantilever at the gap of the open loop significantly improves the sensitivity of resonant frequency shifts. The frequency shifts in two distinct resonant modes are detected based on two dominant orthogonal modes of the patch resonators. In measurements, the
more » ... types achieved a sensitivity of 2.35% frequency shift per 1% strain, more than twice that of existing strain transducers of the same class. In simulations, the new design achieved a theoretical sensitivity up to four times as high as existing designs of RF passive wireless strain transducers. The ground plane allows for the sensitivity of the sensor to be independent from the applied surface. An implementation example of the passive remote sensing system based on the proposed strain transducer is also discussed as a proof-of-concept case. Based on calculations, the interrogation method in the example shows a radar cross section fluctuation of 3.8 dB corresponding to the strain induced at the sensor.
doi:10.1109/tmtt.2013.2243751 fatcat:6musl4b2lrhbpjz2s55heogbtq