A Decomposition-based Representation for 3D Simplicial Complexes [article]

Annie Hui, Lucas Vaczlavik, Leila De Floriani
2006 Symposium on geometry processing : [proceedings]. Symposium on Geometry Processing  
We define a new representation for non-manifold 3D shapes described by three-dimensional simplicial complexes, that we call the Double-Level Decomposition (DLD) data structure. The DLD data structure is based on a unique decomposition of the simplicial complex into nearly manifold parts, and encodes the decomposition in an efficient and powerful two-level representation. It is compact, and it supports efficient topological navigation through adjacencies. It also provides a suitable basis for
more » ... metric reasoning on non-manifold shapes. We describe an algorithm to decompose a 3D simplicial complex into nearly manifold parts. We discuss how to build the DLD data structure from a description of a 3D complex as a collection of tetrahedra, dangling triangles and wire edges, and we present algorithms for topological navigation. We present a thorough comparison with existing representations for 3D simplicial complexes.
doi:10.2312/sgp/sgp06/101-110 fatcat:vtb3trtqxjhf7njjomghhyfymu