Toward Suicidal Ideation Detection with Lexical Network Features and Machine Learning

Ulya Bayram, Çanakkale Onsekiz Mart University, William Lee, Daniel Santel, Ali Minai, Peggy Clark, Tracy Glauser, John Pestian, University of Massachusetts Amherst, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati Children's Hospital Medical Center (+2 others)
2022 Northeast Journal of Complex Systems  
In this study, we introduce a new network feature for detecting suicidal ideation from clinical texts and conduct various additional experiments to enrich the state of knowledge. We evaluate statistical features with and without stopwords, use lexical networks for feature extraction and classification, and compare the results with standard machine learning methods using a logistic classifier, a neural network, and a deep learning method. We utilize three text collections. The first two contain
more » ... ranscriptions of interviews conducted by experts with suicidal (n=161 patients that experienced severe ideation) and control subjects (n=153). The third collection consists of interviews conducted by experts with epilepsy patients, with a few of them admitting to experiencing suicidal ideation in the past (32 suicidal and 77 control). The selected methods detect suicidal ideation with an average area under the curve (AUC) score of 95% on the merged collection with high suicidal ideation, and the trained models generalize over the third collection with an average AUC score of 69%. Results reveal that lexical networks are promising for classification and feature extraction as successful as the deep learning model. We also observe that a logistic classifier's performance was comparable with the deep learning method while promising explainability.
doi:10.22191/nejcs/vol4/iss1/2 fatcat:f4b2ube2xjhqdgmecgzo3djdze