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Abstract

We present a model for computing the probability of a parametric failure due to a spot

defect. The analysis is based on electromigration in conductors under unidirectional current

stress. Analytical solution is given for simple layout and simulations for a more complicated

case. Then we show that in some cases electromigration-dependent parametric defects can

make a significant contribution to the total yield estimation.

1 Introduction

1.1 Reliability and Electromigration

With the huge advance in technology, reliability of VLSI devices demands greater efforts
from both academia and industry. Many factors affect the reliability, among them are:
thermal and mechanical strains, radiation, electromigration, and more. The latter is caused
by excessive current in metal wires. Electrons at high current have enough energy to
drive out lattice ions from their locations. Therefore a void grows in a wire, which finally
disconnects the two metal parts.

International Technology Roadmap for Semiconductors (ITRS) predicts increasing of
electromigration importance: “Electromigration . . . will become a more limiting factor . . . It
must be addressed together with thermal/mechanical reliability modeling. Electromigration
may become a limiting factor as the current per unit area increases.” [1].

1.2 Scope of this study

In this paper we shall introduce a model for reliability in terms of a special kind of yield
problem.

Usually, the term yield can be defined as the ratio of the number of items that are usable
after completion of production to number at start of production that have the potential to be
usable [2]. The term usable is usually interpreted as complying to all logical specifications,
and such yield is called catastrophic yield.

Wagner and Koren in [3] discuss the parametric yield, in which the question is: “How
many chips will have an acceptable performance?”. The term acceptable performance may



have different interpretations, e.g. frequency, power consumption, Mean Time To Fail-
ure (MTTF), supply voltage, ambient temperature, etc. In their paper they develop an
approach to estimate the frequency dependant yield of long interconnect lines. In this
manuscript we shall focus on electromigration-dependent parametric yield (EPY), where
one is concerned about the number of chips that will survive electromigration for a given
period of time.

EPY is a function of layout geometry, the desired MTTF, and current flow data, along
with working temperature, metal properties and some other process data. The proposed
analysis attempts to evaluate the projected ratio of chips complying MTTF target to all
the chips that found to be “usable” as defined above.

1.3 Previous Works

Catastrophic yield is being investigated for at least 30 years. There are many approaches
to evaluate the yield. Among them:

• Random defects generation — Monte Carlo method [4].

• Geometric methods. These include Voronoi diagrams , shape expansion, scan-line
method, the Ring theorem method, and others [5, 6, 7].

Non-catastrophic defects have been investigated before too. Allan and Walton in [8] de-
fine soft faults as those generated by defects that do not connect separate electrical nodes
but reduce the distance between them (or reduce the width of a wire but do not cause an
open); they show that extra material soft faults may result in device failure due to even-
tual dielectric breakdown, and apply the EYE tool to estimate the yield considering those
faults. However, the algorithm developed in [8] does not simply apply to electromigration-
dependent yield because it does not consider the different currents in different wires.

Number of works, summarized in [9] use catastrophic yield data and statistics about
process at waferfab to assess EFR — Early Failure Rate — a measure of reliability. The
works do not connect the “Reliability Defect Density” to the mechanisms that jeopardize
the reliability.

Wagner and Koren in [3] analyze the effect of soft defects on frequency characteristics
on long interconnect lines. They derive frequency-dependent critical area based on trans-
mission line model of such wires.

1.4 This Work

EPY, developed in this paper, shows the yield for a given target MTTF, considering
electromigration. In Section 2 the analytical treatment of EPY is presented for a simple
wire; Section 3 deals with practical solution for finding EPY and includes a brief discussion
about simulation results; and the Summary shortly recaps the main points of this work.

2 Analysis

The probability of spatial defect depends on its location and size. Figures 1 and 2 show a
pattern consisting of a single metal wire of width w much less than its length Y , deposited
on an insulating substrate of width X. An imperfection in photo mask or photoresist,
or contamination can result in the wire be partially or completely broken. If the wire is
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Figure 1. A single wire of width w in the die of size X; with 3 defects of radius r.
The critical interval will be a single strip only if r ≤ w

2
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completely broken, such defect is called fatal, and is well studied [10]. In this section we
study defects that cause a partially broken pattern, and calculate f(w), the MTTF of a
single wire. Among other deficiencies wire width reduction causes growth of current density,
which, in turn, leads to MTTF degradation due to electromigration.

Let wreq be the minimal width of wire, such that for a given constant current, its MTTF
is at least τ . For a defect to become MTTF-parametric fault with parameter τ , it should
fall so that the remaining part of the wire has the width at most wreq.

We answer the following question: Where are the loci of defects that cause the MTTF-
parametric fault with parameter τ? Answering the question requires considering two al-
ternative cases, which are presented in Sec. 2.3 and 2.4. Sec. 2.1 and 2.2 give a required
background.

2.1 Defects size distribution

The defect size probability distribution S(r) is well-studied during last three decades. It
is accepted to be

S(r) =

{

cqr
q 0 ≤ r ≤ r0;

cpr
−p r0 ≤ r ≤ rM ,

(1)

where r0 is the defect radius at which the density function peaks, rM is the maximum size
defect expected to occur, q ≈ 1, p ≈ 3, cq and cp are constants such that S(r) is continuous
at r0 and

∫ rM

0 S(r)dr = 1 (see [11]). It can be shown that r0 � rM (actually, rM → ∞),
q = 1, and p = 3 yield

cq ≈
1

r2
0

cp ≈ r2
0.

2.2 MTTF Versus Wire Width

Let us now calculate f(w), the MTTF of a single wire of width w. Black in [12] develops
the following equation:

wd

MTTF
= AJ2e−

φ

kT ,
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Figure 2. Two defects grater then wire width w. The critical interval is split into two
strips.

where

w wire width,
d wire thickness,

MTTF mean time to failure in the wire,
J current density,
A constant embodying physical metal properties,
φ activation energy,
k Boltzmann’s constant,
T wire temperature.

Assuming current I to be flowing through the wire, we get MTTF as a function of wire
width provided all other parameters are constant:

MTTF = f(w) =
wd

AJ2e−
φ

kT

=
wd

A I2

w2d2 e−
φ

kT

=

(

d3

AI2e−
φ

kT

)

· w3.

Defining

C ≡
d3

AI2e−
φ

kT

we get the following equation:
f(w) = C · w3. (3)

It would be useful to express the minimal width required for wire to survive at least t hours:

f−1(t) = 3
√

t/C. (4)

2.3 Small Defects

In this subsection we deal with relatively small radii of defects, r ≤ W
2 . Let L be the

critical interval within which the defect must fall in order to cause a parametric fault, i.e.,
the wire would be operational, but is expected to fail after some time τ due to electromi-
gration. L designates the length of the loci of defects centers that cause the desired MTTF
reduction to at most τ , while wreq = f−1(τ).

Summation of lengths leads to the following equations:

w = wreq + r +
w − L

2
L = 2wreq + 2r − w.



The MTTF-parametric fault with radius r will appear with probability equal to the ratio
of L to the total width X on which the fault can fall.

prob1(t ≤ τ | r) =
2f−1(τ) + 2r − w

X

As said, the wire’s remaining width should be at least wreq = f−1(τ). Therefore the de-
fects with radius less then

w−wreq

2 do not contribute MTTF-parametric fault. The average

electromigration-dependent parametric fault probability (or EP fault probability) for all de-
fects may be obtained by integrating prob1 multiplied by the fractional number of defects
with radius r over radii sizes

prob1(t ≤ τ) =

∫ w
2

w−f−1(τ)
2

2f−1(τ) + 2r − w

X
· S(r)dr. (6)

2.4 Big Defects

Now we have to treat another case, where the defect’s radius is grater then half the wire’s
width (r ≥ w

2 ). In this case, the critical area, in which the defect must fall in order to cause
parametric fault but not catastrophic fault, is built up of two strips each one of height wreq

(see Figure 2). Therefore we get

L = 2wreq

prob2(t ≤ τ | r) =
2f−1(τ)

X
,

and finally

prob2(t ≤ τ) =

∫ ∞

w
2

2f−1(τ)

X
· S(r)dr. (7)

Actually, the upper limit of integration in the last equation should be finite, since defect
size is bounded by the die size. Eq. 1 shows that the likelihood of defects bigger than
die is very small, therefore we disregard them. Details regarding bounded and unbounded
critical area may be found in [13].

2.5 Average Electromigration-dependent Parametric Fault Probability

Since the Equations 6 and 7 are mutually exclusive, the total probability is the sum of
the two probabilities:

prob(t ≤ τ) = prob1(t ≤ τ) + prob2(t ≤ τ). (8)

As shown in Sec. 2.1, S(r) is defined differently in two intervals. Hence, if w
2 ≤ r0,

prob(t ≤ τ) =

∫ w
2

w−f−1(τ)
2

2f−1(τ) + 2r − w

X
· cqrdr+

+

∫ r0

w
2

2f−1(τ)

X
· cqrdr +

∫ ∞

r0

2f−1(τ)

X
·
cp

r3
dr,



which for cq = 1/r2
0, cp = r2

0 yields

prob(t ≤ τ) =

∫ w
2

w−f−1(τ)
2

2f−1(τ) + 2r − w

Xr2
0

rdr+

+

∫ r0

w
2

2f−1(τ)rdr

Xr2
0

dr +

∫ ∞

r0

2f−1(τ)r2
0

Xr3
dr

prob(t ≤ τ) =
f−1(τ)(9wf−1(τ) + 48r2

0 − 4f−1(τ)2 − 6w2)

24Xr2
0

. (9)

When w
2 ≥ r0, we shall examine two cases: r0 ≥ w−f−1(τ)

2 and r0 ≤ w−f−1(τ)
2 . Thus

prob(t ≤ τ |
r0≥

w−f−1(τ)
2

) =

∫ r0

w−f−1(τ)
2

(2f−1(τ) + 2r − w)r

Xr2
0

dr +

+

∫ w
2

r0

(2f−1(τ) + 2r − w)r2
0

Xr3
dr +

∫ ∞

w
2

2f−1(τ)r2
0

Xr3
dr

prob(t ≤ τ |
r0≥

w−f−1(τ)
2

) =
64wr3

0+w4−6w3f−1(τ)+9w2(f−1(τ))2

24wXr2
0

+ (10)

+
48wf−1(τ)r2

0−4w(f−1(τ))3−24w2r2
0−48r4

0

24wXr2
0

.

prob(t ≤ τ |
r0≤

w−f−1(τ)
2

) =

∫ w
2

w−f−1(τ)
2

(2f−1(τ) + 2r − w)r2
0

Xr3
dr +

∫ ∞

w
2

2f−1(τ)r2
0

Xr3
dr

prob(t ≤ τ |
r0≤

w−f−1(τ)
2

) =
2f−1(τ)r2

0(2w − f−1(τ))

wX(f−1(τ) − w)2
(11)

Summarizing the preceding results, note that Eq. 9, 10, and 11 refer to three different cases
of relations between r0, τ , and w. Also, recall that from Eq. 4, f−1(τ) = 3

√

τ/C.
All the above results have an apparent property: when the required width decreases

towards zero, meaning the DC current in the wire is negligibly small, the average EP fault
probability tends towards zero too. Indeed, Equations 9 and 11 have wreq as a factor in
the numerator, causing the whole expression to go to zero. Equation 10, however, is not
feasible under the assumption wreq → 0, since its two conditions r0 >

w−wreq

2 =w
2 and

w
2 ≥ r0 become contradictory.

Thereby, the EPY is more meaningful for nets with strong DC currents, such as power
grid wires and analog circuits with strong bias current.

3 Simulations

Previous Section shows that even for very simple case, the analytical solution may be
very complicated. Realistic design analysis, usually lacking periodicity, require simulation.
EPYSIM simulator is our implementation of a tool that evaluate EPY for given small
design. EPYSIM’s key features:
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Figure 3. The simulated and analytically calculated MTTF-dependent parametric
fault probability as a function of current in a single wire.

• Employs Monte Carlo approach. Places a large number of defects with their radii
distributed according to S(r) (Eq. 1), checks if a defect causes a parametric fault—
notes the MTTF diminution. For given MTTF = t, EPY is the ratio between the
number of defects, causing MTTF degradation below t, and the total number of
defects.

• Uses (modified) “Mersenne Twister 19937” random generator.

• Written in C++, about 1500 code lines.

Figure 3 shows simulation and analytical results for the case discussed in Sec. 2. The graph
shows quite a good matching of simulation results to analytical solution.

Getting the exact EPY for realistic chip would require considering many additional pa-
rameters, as spatial defects distribution, redundancy, process characterization, and more.
There are tools for yield estimation that take these factors into consideration [4, 6]. On
the other hand, in [9] shown that the number of reliability defects is proportional to the
number of catastrophic defects:

Reliability defects† = k · Catastrophic defects (12)

Thus we shall present the following results in terms of the ratio between electromigration-

dependent parametric faults and catastrophic faults.
We shall present simulation results for a circuit built of 100 NAND2 gates. A single

gate scheme and layout are shown in Fig. 4 and 5. Simulation time is 340 seconds on
Pentium III 550MHz machine with 256MB of RAM for each temperature. Relying on the
resulting graph in Fig. 6, we conclude the following corollaries:

1. For low temperature the ratio between EPY and catastrophic yield is between 0.002
at MTTF = 1 year to 0.006 at MTTF = 20 years, meaning that for process with
80% yield, 0.4 – 1.2 chips out of 1000 produced will fail in 20 years. This ratio is of
good matching with [9], that propose k = 100 – 500, based on statistical data.

2. Working temperature has a huge effect on EPY. At temperatures above 400◦K (126◦C),
which become more and more common in different applications, including analog and

†Defects that cause early life (< 1 year) failures
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Figure 4. The NAND gate used for sim-
ulations and average DC currents in
the branches. Only DC component of
the current affects MTTF due to elec-
tromigration, as described in [14].

Figure 5. The layout of the NAND2
gate. Only the first metal layer is
shown.

mixed designs, the ratio rises to 0.1 and even more. That means that for process
with yield of 80%, operating at high temperature, 20 out of 1000 produced chips
are supposed to fail in 20 years. This may have high importance in life-supporting,
automotive, space and other applications.

4 Summary

In this paper a new yield problem is defined: what is the measure of non-catastrophic
chip faults due to electromigration as a result of defects at fabrication stage? Analysis was
presented for a simple case of a single wire in the center of large die. The electromigration-
dependent parametric fault probability of this pattern is a multicased expression that de-
pends on about 10 parameters. A special simulation program — EPYSIM — was used
to compare the analytical calculations with real defects, and to observe the EPY on more
complicated patterns, as NAND gate array. We show that in some cases the EPY makes a
significant contribution to yield estimation of VLSI chip.
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