A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Wasserstein k-means with sparse simplex projection
[article]
2020
arXiv
pre-print
This paper presents a proposal of a faster Wasserstein k-means algorithm for histogram data by reducing Wasserstein distance computations and exploiting sparse simplex projection. We shrink data samples, centroids, and the ground cost matrix, which leads to considerable reduction of the computations used to solve optimal transport problems without loss of clustering quality. Furthermore, we dynamically reduced the computational complexity by removing lower-valued data samples and harnessing
arXiv:2011.12542v1
fatcat:anbkxsvkgbekvgncwcyzb3snoy