A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Locally compact flows on connected manifolds
2021
Conformal Geometry and Dynamics
In this paper, we completely characterize locally compact flows G G of homeomorphisms of connected manifolds M M by proving that they are either circle groups or real groups. For M = R m M = \mathbb R^m , we prove that every recurrent element in G G is periodic, and we obtain a generalization of the result of Yang [Hilbert's fifth problem and related problems on transformation groups, American Mathematical Society, Providence, RI, 1976, pp. 142–146.] by proving that there is no nontrivial
doi:10.1090/ecgd/366
fatcat:qlknnamdtvdo7h2kyl3k74ab6u