Online Learning for Fast Segmentation of Moving Objects [chapter]

Liam Ellis, Vasileios Zografos
2013 Lecture Notes in Computer Science  
This work addresses the problem of fast, online segmentation of moving objects in video. We pose this as a discriminative online semi-supervised appearance learning task, where supervising labels are autonomously generated by a motion segmentation algorithm. The computational complexity of the approach is significantly reduced by performing learning and classification on oversegmented image regions (superpixels), rather than per pixel. In addition, we further exploit the sparse trajectories
more » ... the motion segmentation to obtain a simple model that encodes the spatial properties and location of objects at each frame. Fusing these complementary cues produces good object segmentations at very low computational cost. In contrast to previous work, the proposed approach (1) performs segmentation on-the-fly (allowing for applications where data arrives sequentially), (2) has no prior model of object types or 'objectness', and (3) operates at significantly reduced computational cost. The approach and its ability to learn, disambiguate and segment the moving objects in the scene is evaluated on a number of benchmark video sequences.
doi:10.1007/978-3-642-37444-9_5 fatcat:aycqmtnpnnhtlfhwnd3wzsgvea