Microscopic Modeling and Simulation of Pedestrian Traffic [book]

Fredrik Johansson
2013 unpublished
Walking is an environmentally friendly and important mode of transportation. It constitutes the first and last part of almost any trip, regardless of what the main mode of transport is, and is especially important in connection to public transport trips. When designing public transport stations, and similar facilities with large and varying volumes of pedestrian traffic, it is advantageous to be able to predict the traffic conditions at the facility before it is built; discovering too late that
more » ... ering too late that the traffic at the facility is inefficient and perceived as uncomfortable may be very costly. To make these predictions we need accurate quantitative models of pedestrian traffic. The foundation of this thesis is the development of a microsimulation platform for pedestrian traffic, the Pedestrian Traffic Simulation Platform (). The platform is based on the Social Force Model () and intended for evaluation of proposed designs of pedestrian facilities. A contribution of this thesis is a thorough documentation of the implementation of the . An extensive literature review of previous research on the  revealed gaps in the methodology used to study the properties of the  and to interpret its results. This thesis proposes local performance measures to fill this gap. These measures are based on properties of the , and enable quantitative analyses of the quality of service at pedestrian facilities. The proposed measures are applied to the simulation results of some basic scenarios, which reveal previously unknown properties of the . These properties can be used to test the accuracy of the . Another gap in the literature was how to include waiting behavior in the . This thesis shows that accurate modeling of waiting pedestrians is important for the accuracy of the simulation results, and proposes three different extensions to the  to model waiting behavior.
doi:10.3384/lic.diva-101085 fatcat:jl5v7ac675hmlazbqlltwl6wxy