EEG-Based Identity Authentication Framework Using Face Rapid Serial Visual Presentation with Optimized Channels

Ying Zeng, Qunjian Wu, Kai Yang, Li Tong, Bin Yan, Jun Shu, Dezhong Yao
2018 Sensors  
Electroencephalogram (EEG) signals, which originate from neurons in the brain, have drawn considerable interests in identity authentication. In this paper, a face image-based rapid serial visual presentation (RSVP) paradigm for identity authentication is proposed. This paradigm combines two kinds of biometric trait, face and EEG, together to evoke more specific and stable traits for authentication. The event-related potential (ERP) components induced by self-face and non-self-face (including
more » ... iliar and not familiar) are investigated, and significant differences are found among different situations. On the basis of this, an authentication method based on Hierarchical Discriminant Component Analysis (HDCA) and Genetic Algorithm (GA) is proposed to build subject-specific model with optimized fewer channels. The accuracy and stability over time are evaluated to demonstrate the effectiveness and robustness of our method. The averaged authentication accuracy of 94.26% within 6 s can be achieved by our proposed method. For a 30-day averaged time interval, our method can still reach the averaged accuracy of 88.88%. Experimental results show that our proposed framework for EEG-based identity authentication is effective, robust, and stable over time.
doi:10.3390/s19010006 fatcat:e5wy6kn2ozfsthwx32tcv6xxua