A fast, single-iteration ensemble Kalman smoother for sequential data assimilation [post]

Colin Grudzien, Marc Bocquet
2021 unpublished
Abstract. Ensemble-variational methods form the basis of the state-of-the-art for nonlinear, scalable data assimilation, yet current designs may not be cost-effective for reducing prediction error in online, short-range forecast systems. We propose a novel, outer-loop optimization of the ensemble-variational formalism for applications in which forecast error dynamics are weakly nonlinear, such as synoptic meteorology. In order to rigorously derive our method and demonstrate its novelty, we
more » ... w ensemble smoothers that appear throughout the literature in a unified Bayesian maximum-a-posteriori narrative, updating and simplifying some results. After mathematically deriving our technique, we systematically develop and inter-compare all studied schemes in the open-source Julia package DataAssimilationBenchmarks.jl, with pseudo-code provided for these methods. This high-performance numerical framework, supporting our mathematical results, produces extensive benchmarks that demonstrate the significant performance advantages of our proposed technique. In particular, our single-iteration ensemble Kalman smoother is shown both to improve prediction / posterior accuracy and to simultaneously reduce the leading order cost of iterative, sequential smoothers in a variety of relevant test cases for operational short-range forecasts. This long work is thus intended to present our novel single-iteration ensemble Kalman smoother, and to provide a theoretical and computational framework for the study of sequential, ensemble-variational Kalman filters and smoothers generally.
doi:10.5194/gmd-2021-306 fatcat:mq2c27wouzeyznjql4erp6r75m