SARS-CoV-2 receptor binding mutations and antibody mediated immunity [article]

Marios Mejdani, Kiandokht Haddadi, Chester Pham, Radhakrishnan Mahadevan
2021 bioRxiv   pre-print
SARS-CoV-2 mutations can impact infectivity, viral load, and overall morbidity/mortality during infection. In this analysis, we look at the mutational landscape of the SARS-CoV-2 receptor binding domain, a structure that is antigenic and allows for viral binding to the host. We analyze 104193 GISAID sequences acquired on October 15th, 2020 with a majority of sequences (96%) containing point mutations. We report high frequency mutations with improved binding affinity to ACE2 including S477N,
more » ... K, V367F, and N501Y and address the potential impact of RBD mutations on antibody binding. The high frequency S477N mutation is present in 6.7% of all SARS-CoV-2 sequences, co-occurs with D614G, and is currently present in 14 countries. To address RBD-antibody interactions we take a subset of human derived antibodies and define their interacting residues using PDBsum. Our analysis shows that adaptive immunity against SARS-CoV-2 enlists broad coverage of the RBD suggesting that antibody mediated immunity should be sufficient to resolve infection in the presence of RBD point mutations that conserve structure.
doi:10.1101/2021.01.25.427846 fatcat:fdz43zgch5g6tarobu5xyemz54