On multigrid solution of the implicit equations of hydrodynamics

K. Kifonidis, E. Müller
2012 Astronomy and Astrophysics  
Aims. We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate
more » ... the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods. The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, nonlinear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results. For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a Courant number of nine thousand, even complete multigrid breakdown is observed. Local Fourier analysis indicates that the degradation of the convergence rate is associated with the coarse-grid correction algorithm. An implicit scheme for the Euler equations that makes use of the present method was, nevertheless, able to outperform a standard explicit scheme on a time-dependent problem with a Courant number of order 1000. Conclusions. For steady-state problems, the described approach enables the construction of parallelizable, efficient, and robust implicit hydrodynamics solvers. The applicability of the method to time-dependent problems is presently restricted to cases with moderately high Courant numbers. This is due to an insufficient coarse-grid correction of the employed multigrid algorithm for large time steps. Further research will be required to help us to understand and overcome the observed multigrid convergence difficulties for time-dependent problems.
doi:10.1051/0004-6361/201116979 fatcat:vv5lxhulhreo7n34tj7ipc76ia