Permutation monoids and MB-homogeneity for graphs and relational structures [article]

Thomas D. H. Coleman, David M. Evans, Robert D. Gray
<span title="2019-02-11">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In this paper, we investigate the connection between infinite permutation monoids and bimorphism monoids of first-order structures. Taking our lead from the study of automorphism groups of structures as infinite permutation groups and the more recent developments in the field of homomorphism-homogeneous structures, we establish a series of results that underline this connection. Of particular interest is the idea of MB-homogeneity; a relational structure M is MB-homogeneous if every
more &raquo; ... between finite substructures of M extends to a bimorphism of M. The results in question include a characterisation of closed permutation monoids, a Fraïssé-like theorem for MB-homogeneous structures, and the construction of 2^_0 pairwise non-isomorphic countable MB-homogeneous graphs. We prove that any finite group arises as the automorphism group of some MB-homogeneous graph and use this to construct oligomorphic permutation monoids with any given finite group of units. We also consider MB-homogeneity for various well-known examples of homogeneous structures and in particular give a complete classification of countable homogeneous undirected graphs that are also MB-homogeneous.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1802.04166v2</a> <a target="_blank" rel="external noopener" href="">fatcat:5tj67zxhvre7hlifnrsxgaevty</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>