A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Ordered Spaces all of Whose Continuous Images are Normal
1989
Proceedings of the American Mathematical Society
Some spaces, such as compact Hausdorff spaces, have the property that every regular continuous image is normal. In this paper, we look at such spaces. In particular, it is shown that if a normal space has finite Stone-Cech remainder, then every continuous image is normal. A consequence is that every continuous image of a Dedekind complete linearly ordered topological space of uncountable cofinality and coinitiality is normal. The normality of continuous images of other ordered spaces is also
doi:10.2307/2046761
fatcat:ugedjvylivbz7lgccbpnbghvcm