On Feasibility, Stability and Performance in Distributed Model Predictive Control

Pontus Giselsson, Anders Rantzer
2014 IEEE Transactions on Automatic Control  
In distributed model predictive control (DMPC), where a centralized optimization problem is solved in distributed fashion using dual decomposition, it is important to keep the number of iterations in the solution algorithm, i.e. the amount of communication between subsystems, as small as possible. At the same time, the number of iterations must be enough to give a feasible solution to the optimization problem and to guarantee stability of the closed loop system. In this paper, a stopping
more » ... , a stopping condition to the distributed optimization algorithm that guarantees these properties, is presented. The stopping condition is based on two theoretical contributions. First, since the optimization problem is solved using dual decomposition, standard techniques to prove stability in model predictive control (MPC), i.e. with a terminal cost and a terminal constraint set that involve all state variables, do not apply. For the case without a terminal cost or a terminal constraint set, we present a new method to quantify the control horizon needed to ensure stability and a prespecified performance. Second, the stopping condition is based on a novel adaptive constraint tightening approach. Using this adaptive constraint tightening approach, we guarantee that a primal feasible solution to the optimization problem is found and that closed loop stability and performance is obtained. Numerical examples show that the number of iterations needed to guarantee feasibility of the optimization problem, stability and a prespecified performance of the closed-loop system can be reduced significantly using the proposed stopping condition.
doi:10.1109/tac.2013.2285779 fatcat:ojbwdeyanbh6jcnkljbc2o3epi