Genetic algorithms for automatic classification of moving objects

Omid David-Tabibi, Nathan S. Netanyahu, Yoav Rosenberg, Moshe Shimoni
2010 Proceedings of the 12th annual conference comp on Genetic and evolutionary computation - GECCO '10  
This paper presents an integrated approach, combining a state-of-the-art commercial object detection system and genetic algorithms (GA)-based learning for automatic object classification. Specifically, the approach is based on applying weighted nearest neighbor classification to feature vectors extracted from the detected objects, where the weights are evolved due to GA-based learning. Our results demonstrate that this GA-based approach is considerably superior to other standard classification methods.
doi:10.1145/1830761.1830866 dblp:conf/gecco/David-TabibiNRS10 fatcat:l6wqj4frebbf5i665ttrbsoacq