Evolution of the genetic architecture of local adaptations under genetic rescue is determined by mutational load and polygenicity [article]

Yulin Zhang, Aaron J Stern, Rasmus Nielsen
2020 bioRxiv   pre-print
Inbred populations often suffer from heightened mutational load and decreased fitness due to lower efficiency of purifying selection at small effective population size. Genetic rescue (GR) is a tool that is studied and deployed with the aim of increasing fitness of such inbred populations. The success of GR is known to depend on certain factors that may vary between different populations, such as their demographic history and distribution of dominance effects of mutations. While we understand
more » ... e effects of these factors on the evolution of overall ancestry in the inbred population after GR, it is less clear what the effect is on local adaptations and their genetic architecture. To this end, we conduct a population genetic simulation study evaluating the effect of several different factors on the efficacy of GR including trait complexity (Mendelian vs. polygenic), dominance effects, and demographic history. We find that the effect on local adaptations depends highly on the mutational load at the time of GR, which is shaped dynamically by interactions between demographic history and dominance effects of deleterious variation. While local adaptations are generally restored post-GR in the long run, in the short term they are often compromised in the process of purging deleterious variation. We also show that while local adaptations are almost always fully restored, the degree to which ancestral genetic variation comprising the trait is replaced by donor variation can vary drastically, and is especially high for complex traits. Our results provide considerations for practical GR and its effects on trait evolution.
doi:10.1101/2020.11.09.374413 fatcat:gk2ilb3dejal5i34qbeuqj7kd4