A non-hierarchical attention network with modality dropout for textual response generation in multimodal dialogue systems [article]

Rongyi Sun, Borun Chen, Qingyu Zhou, Yinghui Li, YunBo Cao, Hai-Tao Zheng
2021 arXiv   pre-print
Existing text- and image-based multimodal dialogue systems use the traditional Hierarchical Recurrent Encoder-Decoder (HRED) framework, which has an utterance-level encoder to model utterance representation and a context-level encoder to model context representation. Although pioneer efforts have shown promising performances, they still suffer from the following challenges: (1) the interaction between textual features and visual features is not fine-grained enough. (2) the context
more » ... can not provide a complete representation for the context. To address the issues mentioned above, we propose a non-hierarchical attention network with modality dropout, which abandons the HRED framework and utilizes attention modules to encode each utterance and model the context representation. To evaluate our proposed model, we conduct comprehensive experiments on a public multimodal dialogue dataset. Automatic and human evaluation demonstrate that our proposed model outperforms the existing methods and achieves state-of-the-art performance.
arXiv:2110.09702v2 fatcat:cqwizhfypnbbzmkbogt5ve4d6q