Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes

Mercedes Arguello-Casteleiro, Robert Stevens, Julio Des-Diz, Chris Wroe, Maria Jesus Fernandez-Prieto, Nava Maroto, Diego Maseda-Fernandez, George Demetriou, Simon Peters, Peter-John M. Noble, Phil H. Jones, Jo Dukes-McEwan (+3 others)
<span title="2019-11-12">2019</span> <i title="Springer Science and Business Media LLC"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/iasjcyzzyncgnohh3aitx65bhq" style="color: black;">Journal of Biomedical Semantics</a> </i> &nbsp;
Deep Learning opens up opportunities for routinely scanning large bodies of biomedical literature and clinical narratives to represent the meaning of biomedical and clinical terms. However, the validation and integration of this knowledge on a scale requires cross checking with ground truths (i.e. evidence-based resources) that are unavailable in an actionable or computable form. In this paper we explore how to turn information about diagnoses, prognoses, therapies and other clinical concepts
more &raquo; ... to computable knowledge using free-text data about human and animal health. We used a Semantic Deep Learning approach that combines the Semantic Web technologies and Deep Learning to acquire and validate knowledge about 11 well-known medical conditions mined from two sets of unstructured free-text data: 300 K PubMed Systematic Review articles (the PMSB dataset) and 2.5 M veterinary clinical notes (the VetCN dataset). For each target condition we obtained 20 related clinical concepts using two deep learning methods applied separately on the two datasets, resulting in 880 term pairs (target term, candidate term). Each concept, represented by an n-gram, is mapped to UMLS using MetaMap; we also developed a bespoke method for mapping short forms (e.g. abbreviations and acronyms). Existing ontologies were used to formally represent associations. We also create ontological modules and illustrate how the extracted knowledge can be queried. The evaluation was performed using the content within BMJ Best Practice.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s13326-019-0212-6">doi:10.1186/s13326-019-0212-6</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/31711540">pmid:31711540</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC6849172/">pmcid:PMC6849172</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/vfm3gd524ng3xprcra2z356lha">fatcat:vfm3gd524ng3xprcra2z356lha</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200215171234/https://jbiomedsem.biomedcentral.com/track/pdf/10.1186/s13326-019-0212-6" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/4b/df/4bdf091da482fc663c14cf015b022ada2941206a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s13326-019-0212-6"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849172" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>