HAQ: Hardware-Aware Automated Quantization With Mixed Precision

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, Song Han
2019 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)  
Model quantization is a widely used technique to compress and accelerate deep neural network (DNN) inference. Emergent DNN hardware accelerators begin to support mixed precision (1-8 bits) to further improve the computation efficiency, which raises a great challenge to find the optimal bitwidth for each layer: it requires domain experts to explore the vast design space trading off among accuracy, latency, energy, and model size, which is both timeconsuming and sub-optimal. There are plenty of
more » ... ecialized hardware for neural networks, but little research has been done for specialized neural network optimization for a particular hardware architecture. Conventional quantization algorithm ignores the different hardware architectures and quantizes all the layers in a uniform way. In this paper, we introduce the Hardware-Aware Automated Quantization (HAQ) framework which leverages the reinforcement learning to automatically determine the quantization policy, and we take the hardware accelerator's feedback in the design loop. Rather than relying on proxy signals such as FLOPs and model size, we employ a hardware simulator to generate direct feedback signals (latency and energy) to the RL agent. Compared with conventional methods, our framework is fully automated and can specialize the quantization policy for different neural network architectures and hardware architectures. Our framework effectively reduced the latency by 1.4-1.95× and the energy consumption by 1.9× with negligible loss of accuracy compared with the fixed bitwidth (8 bits) quantization. Our framework reveals that the optimal policies on different hardware architectures (i.e., edge and cloud architectures) under different resource constraints (i.e., latency, energy and model size) are drastically different. We interpreted the implication of different quantization policies, which offer insights for both neural network architecture design and hardware architecture design. * indicates equal contributions. 68 69 70 71 72 73 25 44 63 82 101 120 MobileNets (fixed 8-bit quantization) MobileNets (our flexible-bit quantization) Latency (ms) Top-1 Accuracy (%) 1MB 2MB 3MB Model Size: Figure 1: We need mixed precision for different layers. We quantize MobileNets [13] to different number of bits (both weights and activations), and it lies on a better pareto curve (yellow) than fixed bit quantization (blue). The reason is that different layers have different redundancy and have different arithmetic intensity (OPs/byte) on the hardware, which advocates for using mixed precision for different layers.
doi:10.1109/cvpr.2019.00881 dblp:conf/cvpr/WangLLLH19 fatcat:xlb3d7riejcm7c4udpzgqnk67y